SISSY: An efficient and automatic algorithm for the analysis of EEG sources based on structured sparsity

&NA; Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB‐SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude‐biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients.

[1]  S. Tobimatsu,et al.  Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: Simultaneous recording of magnetic fields and electrocorticography , 2002, Neurological research.

[2]  Lei Ding,et al.  Reconstructing cortical current density by exploring sparseness in the transform domain , 2009, Physics in medicine and biology.

[3]  Bertrand Thirion,et al.  New Results - Identifying predictive regions from fMRI with TV-ℓ1 prior , 2013 .

[4]  Hiroshi Masuda,et al.  Epileptic Spikes: Magnetoencephalography versus Simultaneous Electrocorticography , 2002, Epilepsia.

[5]  Barry D. Van Veen,et al.  Cortical patch basis model for spatially extended neural activity , 2006, IEEE Transactions on Biomedical Engineering.

[6]  J Gotman,et al.  Reliability of dipole models of epileptic spikes , 1999, Clinical Neurophysiology.

[7]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[8]  Lei Ding,et al.  Sparse MEG Source Imaging For Reconstructing Dynamic Sources of Interictal Spikes in Partial Epilepsy , 2013, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[9]  M. Fuchs,et al.  Smooth reconstruction of cortical sources from EEG or MEG recordings , 1996, NeuroImage.

[10]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[11]  Lei Ding,et al.  Reconstructing spatially extended brain sources via enforcing multiple transform sparseness , 2014, NeuroImage.

[12]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[14]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[15]  Rémi Gribonval,et al.  A performance study of various brain source imaging approaches , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Rémi Gribonval,et al.  Brain-Source Imaging: From sparse to tensor models , 2015, IEEE Signal Processing Magazine.

[17]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[18]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[19]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[20]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[21]  Rémi Gribonval,et al.  Fast, variation-based methods for the analysis of extended brain sources , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[22]  J S Ebersole,et al.  Magnetoencephalography/Magnetic Source Imaging in the Assessment of Patients with Epilepsy , 1997, Epilepsia.

[23]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[24]  Alexandre Gramfort,et al.  Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision. (Localisation et suivi d'activité fonctionnelle cérébrale en électro et magnétoencéphalographie: Méthodes et applications au système visuel humain) , 2009 .

[25]  Julius P. A. Dewald,et al.  Evaluation of different cortical source localization methods using simulated and experimental EEG data , 2005, NeuroImage.

[26]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[27]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[28]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[29]  Polina Golland,et al.  A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.

[30]  Jen-Chuen Hsieh,et al.  Author's Personal Copy Spatially Sparse Source Cluster Modeling by Compressive Neuromagnetic Tomography , 2022 .

[31]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[32]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[33]  Christophe Grova,et al.  MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches , 2013, PloS one.

[34]  Laurent Albera,et al.  Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach , 2011, NeuroImage.

[35]  Ian T. Paulsen,et al.  Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts , 2013, PloS one.

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Luca Baldassarre,et al.  Structured Sparsity Models for Brain Decoding from fMRI Data , 2012, 2012 Second International Workshop on Pattern Recognition in NeuroImaging.

[38]  Gaël Varoquaux,et al.  Identifying Predictive Regions from fMRI with TV-L1 Prior , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[39]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[40]  F Wendling,et al.  EEG extended source localization: Tensor-based vs. conventional methods , 2014, NeuroImage.

[41]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[42]  Fabrice Bartolomei,et al.  Electric Source Imaging in Frontal Lobe Epilepsy , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[43]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[44]  Hiroshi Shibasaki,et al.  Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy , 1997, NeuroImage.

[45]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[46]  Shiqian Ma,et al.  An efficient algorithm for compressed MR imaging using total variation and wavelets , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.