Submodularity beyond submodular energies: Coupling edges in graph cuts

We propose a new family of non-submodular global energy functions that still use submodularity internally to couple edges in a graph cut. We show it is possible to develop an efficient approximation algorithm that, thanks to the internal submodularity, can use standard graph cuts as a subroutine. We demonstrate the advantages of edge coupling in a natural setting, namely image segmentation. In particular, for fine-structured objects and objects with shading variation, our structured edge coupling leads to significant improvements over standard approaches.

[1]  Anton Osokin,et al.  Fast Approximate Energy Minimization with Label Costs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[3]  Leo Grady,et al.  A Seeded Image Segmentation Framework Unifying Graph Cuts And Random Walker Which Yields A New Algorithm , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[4]  Satoru Fujishige,et al.  Realization of set functions as cut functions of graphs and hypergraphs , 2001, Discret. Math..

[5]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[7]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[8]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Jin-Yi Cai,et al.  Approximation and hardness results for label cut and related problems , 2009, J. Comb. Optim..

[10]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[11]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[15]  Vladimir Kolmogorov,et al.  Graph cut based image segmentation with connectivity priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Nikos Komodakis,et al.  Beyond pairwise energies: Efficient optimization for higher-order MRFs , 2009, CVPR.

[17]  David B. Shmoys,et al.  Maximizing the Spread of Cascades Using Network Design , 2010, UAI.

[18]  Hiroshi Ishikawa Higher-order clique reduction in binary graph cut , 2009, CVPR.

[19]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Stanislav Zivny,et al.  Classes of submodular constraints expressible by graph cuts , 2008, Constraints.

[21]  Vikas Singh,et al.  An efficient algorithm for Co-segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[22]  L. Shapley Cores of convex games , 1971 .

[23]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[25]  Sebastian Nowozin,et al.  Global connectivity potentials for random field models , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Daniel Cremers,et al.  Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[27]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  J. Bilmes,et al.  Cooperative Cuts: Graph Cuts with Submodular Edge Weights , 2010 .

[29]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[30]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[32]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[33]  Patrick Pérez,et al.  Interactive Image Segmentation Using an Adaptive GMMRF Model , 2004, ECCV.

[34]  Pushmeet Kohli,et al.  Graph Cut Based Inference with Co-occurrence Statistics , 2010, ECCV.

[35]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[36]  Pushmeet Kohli,et al.  Energy minimization for linear envelope MRFs , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Pushmeet Kohli,et al.  P³ & Beyond: Move Making Algorithms for Solving Higher Order Functions , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Éva Tardos,et al.  Layered Augmenting Path Algorithms , 1986, Math. Oper. Res..