Rare-Earth-Ion-Doped Channel Waveguide Lasers on Silicon

This paper reviews the recent developments in rare-earth-ion-doped channel waveguide lasers. Optical gain in rare-earth-ion-doped waveguides has been increased by two orders of magnitude to ~1000 dB/cm and waveguide lasers with extremely high slope efficiencies and output powers exceeding the Watt level have been demonstrated. Of particular interest in integrated optics is the recent integration of rare-earth-ion-doped channel waveguide lasers in amorphous materials directly deposited on a silicon substrate. Remarkable performance with respect to slope efficiency, output power, and laser linewidth has been achieved.

[1]  Remco Stoffer,et al.  Integrated Al $_2$ O $_3$ :Er $^{3+}$ Zero-Loss Optical Amplifier and Power Splitter With 40-nm Bandwidth , 2010 .

[2]  Markus Pollnau,et al.  Steady-state lasing in a solid polymer , 2010 .

[3]  B. Luther-Davies,et al.  Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers , 2014 .

[4]  Alan J. Heeger,et al.  Semiconducting (Conjugated) Polymers as Materials for Solid‐State Lasers , 2000 .

[5]  M Pollnau,et al.  Thulium channel waveguide laser in a monoclinic double tungstate with 70% slope efficiency. , 2012, Optics letters.

[6]  J. Leuthold,et al.  Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model , 2000 .

[7]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[8]  Graham A. Turnbull,et al.  Organic Semiconductor Lasers , 2007 .

[9]  Markus Pollnau,et al.  Reactive ion etching of low-loss channel waveguides in $Al_2O_3$ and $Y_2O_3$ layers , 2007 .

[10]  Joseph S. Hayden,et al.  Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass , 2000 .

[11]  Zhan Su,et al.  Monolithic erbium- and ytterbium-doped microring lasers on silicon chips. , 2014, Optics express.

[12]  Lihui Huang,et al.  Sm3+-doped polymer optical waveguide amplifiers , 2010 .

[13]  Dimitri Geskus,et al.  Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon , 2010 .

[14]  M. Smit,et al.  Absorption and emission cross sections of Er3+ in Al2O3 waveguides , 1997 .

[15]  Franz X Kärtner,et al.  Scaling of passively mode-locked soliton erbium waveguide lasers based on slow saturable absorbers. , 2008, Optics express.

[16]  Markus Pollnau,et al.  Erbium‐doped integrated waveguide amplifiers and lasers , 2011 .

[17]  Virginie Nazabal,et al.  Red and orange Pr3+:LiYF4 planar waveguide laser. , 2013, Optics letters.

[18]  Johannes W. Hofstraat,et al.  Rare-earth doped polymers for planar optical amplifiers , 2002 .

[19]  Edwin Yue-Bun Pun,et al.  Er3+–Yb3+ codoped polymeric optical waveguide amplifiers , 2004 .

[20]  Edward H. Bernhardi,et al.  Intra‐laser‐cavity microparticle sensing with a dual‐wavelength distributed‐feedback laser , 2013 .

[21]  V. Fromzel,et al.  Resonantly pumped single-mode channel waveguide Er:YAG laser with nearly quantum defect limited efficiency. , 2013, Optics letters.

[22]  Gunther Roelkens,et al.  Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. , 2010, Optics express.

[23]  Ting Wang,et al.  Transmission of 32-Tb/s Capacity Over 580 km Using RZ-Shaped PDM-8QAM Modulation Format and Cascaded Multimodulus Blind Equalization Algorithm , 2010, Journal of Lightwave Technology.

[24]  P. Lambeck,et al.  Characteristics of Er-doped Al/sub 2/O/sub 3/ thin films deposited by reactive co-sputtering , 2000, IEEE Journal of Quantum Electronics.

[25]  M. Pollnau,et al.  Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency. , 2014, Optics letters.

[26]  Mk Meint Smit,et al.  Photoluminescence characterization of Er-implanted Al2O3 films , 1993 .

[27]  L.H. Spiekman,et al.  Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications , 2004, Journal of Lightwave Technology.

[28]  M. Sorel,et al.  Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist , 2008 .

[29]  Roberto Sastre,et al.  Polymeric solid-state dye lasers: Recent developments , 2003 .

[30]  Leo H. Spiekman Semiconductor Optical Amplifiers , 2002 .

[31]  Jie Sun,et al.  CMOS-compatible 75 mW erbium-doped distributed feedback laser. , 2014, Optics letters.

[32]  A. Crunteanu,et al.  Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide , 2002, CLEO 2002.

[33]  G. N. van den Hoven,et al.  Absorption and emission cross sections of Er(3+) in Al(2)O(3) waveguides. , 1997, Applied optics.

[34]  Carsten Schmidt-Langhorst,et al.  160 Gbit/s DPSK transmission over 320 km fibre link with high long-term stability , 2005 .

[35]  Edward H. Bernhardi,et al.  Monolithic Distributed Bragg Reflector Cavities in Al2O3 with Quality Factors Exceeding 106 , 2011 .

[36]  Günter Huber,et al.  Spectroscopy of upper energy levels in an $Er^{3+}$-doped amorphous oxide , 2013 .

[37]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[38]  D. C. Hanna,et al.  Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG , 1998 .

[39]  O Antipov,et al.  Detailed characterization of pump-induced refractive index changes observed in Nd:YVO(4), Nd:GdVO(4) and Nd:KGW. , 2010, Optics express.

[40]  Morio Kobayashi,et al.  Amplification in erbium-doped silica-based planar lightwave circuits , 1992 .

[41]  Markus Pollnau,et al.  Amplification in epitaxially grown $Er:(Gd, Lu)_2O_3$ waveguides for active integrated optical devices , 2008 .

[42]  Dibyendu Dey,et al.  Erbium-Doped Lithium Niobate Waveguide Lasers , 2005, IEICE Trans. Electron..

[43]  James S. Wilkinson,et al.  Structural characteristics and optical properties of plasma assisted reactive magnetron sputtered dielectric thin films for planar waveguiding applications , 2012 .

[44]  Michael L Davenport,et al.  Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. , 2013, Optics letters.

[45]  Bai Yang,et al.  Nanoassembly of photoluminescent films containing rare earth complex nanoparticles on planar and microspherical supports , 2006 .

[46]  S. Brueck,et al.  Gain, refractive index change, and linewidth enhancement factor in broad-area GaAs and InGaAs quantum-well lasers , 2001 .

[47]  Costas Fotakis,et al.  Growth of Ti:sapphire single crystal thin films by pulsed laser deposition , 1997 .

[48]  Dimitri Geskus,et al.  Neodymium-complex-doped photodefined polymer channel waveguide amplifiers. , 2008, Optics letters.

[49]  Uli Lemmer,et al.  Conjugated polymers: lasing and stimulated emission , 2001 .

[50]  Edward H. Bernhardi,et al.  Impact of luminescence quenching on relaxation-oscillation frequency in solid-state lasers , 2012 .

[51]  G. S. Murugan,et al.  High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon , 2012 .

[52]  D. Shepherd,et al.  Erbium-Doped Waveguide Laser in Tantalum Pentoxide , 2010, IEEE Photonics Technology Letters.

[53]  Mk Meint Smit,et al.  Al2O3 films for integrated optics , 1986 .

[54]  Nir Tessler,et al.  Lasers Based on Semiconducting Organic Materials , 1999 .

[55]  Markus Pollnau,et al.  Designable buried waveguides in sapphire by proton implantation , 2004 .

[56]  R W Eason,et al.  Ti:sapphire planar waveguide laser grown by pulsed laser deposition. , 1997, Optics letters.

[57]  J. Bradley,et al.  Integrated Al2O3:Er3+ ring lasers on silicon with wide wavelength selectivity. , 2010, Optics letters.

[58]  M. Pollnau,et al.  Nd-Doped Polymer Waveguide Amplifiers , 2010, IEEE Journal of Quantum Electronics.

[59]  Dan Zhao,et al.  Synthesis and luminescence properties of mesophase silica thin films doped with in-situ formed europium complex , 2008 .

[60]  A. Polmana,et al.  APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials , 1997 .

[61]  Günter Huber,et al.  Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser. , 2010, Optics express.

[62]  Steve Madden,et al.  Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8 dB/cm internal gain. , 2010, Optics express.

[63]  Jean-Emmanuel Broquin,et al.  4.25dB gain in a hybrid silicate/phosphate glasses optical amplifier made by wafer bonding and ion-exchange techniques , 2004 .

[64]  M. Pollnau,et al.  High-gain Al2O3:Nd3+ channel waveguide amplifiers at 880 nm, 1060 nm, and 1330 nm , 2010 .

[65]  M. Pollnau,et al.  Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Folkert Horst,et al.  Integrated Optical Backplane Amplifier , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[67]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[68]  D. Shepherd,et al.  Single-transverse-mode Ti:sapphire rib waveguide laser. , 2005, Optics express.

[69]  K. Oe,et al.  Continuous-wave stimulated emission and optical amplification in europium (III)-aluminum nanocluster-doped polymeric waveguide , 2007 .

[70]  A. Leinse,et al.  Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. , 2011, Optics express.

[71]  Markus Pollnau,et al.  Continuous-wave Nd-doped polymer lasers. , 2010, Optics letters.

[72]  Dimitri Geskus,et al.  High-power, broadly tunable, and low-quantum-defect KGd(1-x)Lu(x)(WO(4))(2):Yb(3+) channel waveguide lasers. , 2010, Optics express.

[73]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[74]  Joseph Zyss,et al.  Demonstration of net gain at 1550nm in an erbium-doped polymersingle mode rib waveguide , 2006 .

[75]  S. Venkatesh,et al.  A compact high-performance optical waveguide amplifier , 2004, IEEE Photonics Technology Letters.

[76]  Kerry J. Vahala,et al.  Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol–gel process , 2005 .

[77]  Focused ion beam nano-structuring of $Al_2O_3$ dielectric layers for photonic applications , 2007 .

[78]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[80]  Marc Eichhorn,et al.  Spectroscopic Foundations of Lasers: Spontaneous Emission Into a Resonator Mode , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  Dimitri Geskus,et al.  Giant Optical Gain in a Rare‐Earth‐Ion‐Doped Microstructure , 2012, Advanced materials.

[82]  Andreas E. Vasdekis,et al.  Broadband solid state optical amplifier based on a semiconducting polymer , 2006 .

[83]  M. Nakazawa,et al.  1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator , 2000 .

[84]  A. Kar,et al.  Ultrafast Laser Inscription of a High Gain Er-doped Bismuthate Glass Waveguide Amplifier , 2010 .

[85]  G. S. Murugan,et al.  Spectroscopy, Modeling, and Performance of Erbium-Doped Ta$_{2}$O$_{5}$ Waveguide Amplifiers , 2012, Journal of Lightwave Technology.

[86]  Ray T. Chen,et al.  Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide , 2000 .

[87]  P. Lambeck,et al.  On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity , 2012 .

[88]  Markus Pollnau,et al.  Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2). , 2007, Optics letters.

[89]  Valentin Petrov,et al.  Yb-doped KY(WO4)2 planar waveguide laser. , 2006, Optics letters.

[90]  M. Pollnau,et al.  Highly efficient Yb3+-doped channel waveguide laser at 981 nm. , 2013, Optics express.

[91]  Purnawirman,et al.  C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. , 2013, Optics letters.

[92]  J. Bowers,et al.  Hybrid silicon evanescent devices , 2007 .

[93]  Jean-Claude Simon,et al.  170 Gbit/s transmission in an erbium-doped waveguide amplifier on silicon. , 2009, Optics express.

[94]  S. Blaize,et al.  Multiwavelengths DFB waveguide laser arrays in Yb-Er codoped phosphate glass substrate , 2003, IEEE Photonics Technology Letters.

[95]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[96]  Philippe Regreny,et al.  III-V/Si photonics by die-to-wafer bonding , 2007 .

[97]  Aurelian Crunteanu,et al.  Performance of Ar/sup +/-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources , 2003 .

[98]  Patrice Camy,et al.  Tm:LiYF4 planar waveguide laser at 1.9 μm. , 2012, Optics letters.

[99]  P. Doussiere,et al.  1.55 /spl mu/m polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain , 1994, IEEE Photonics Technology Letters.

[100]  Raimund Ricken,et al.  Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. , 2004, Optics letters.

[101]  Markus Pollnau,et al.  Energy-transfer-upconversion models, their applicability and breakdown in the presence of spectroscopically distinct ion classes: A case study in amorphous Al2O3:Er3+ , 2013 .

[102]  M. Kamp,et al.  DFB laser diodes in the wavelength range from 760 nm to 2.5 microm. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[103]  Christos Grivas,et al.  Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques , 2011 .

[104]  D. Shepherd,et al.  Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation. , 2006, Optics letters.

[105]  K. Vahala,et al.  Ultralow-threshold erbium-implanted toroidal microlaser on silicon , 2004 .

[106]  B. Luther-Davies,et al.  Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics. , 2013, Optics letters.

[107]  J. C. Caris,et al.  Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes , 1964 .

[108]  M. Pollnau,et al.  Reliable Low-Cost Fabrication of Low-Loss $\hbox{Al}_{2}\hbox{O} _{3}{:}\hbox{Er}^{3+}$ Waveguides With 5.4-dB Optical Gain , 2009, IEEE Journal of Quantum Electronics.

[109]  Edward H. Bernhardi,et al.  Erbium-doped spiral amplifiers with 20 dB of net gain on silicon. , 2014, Optics express.

[110]  S. Madden,et al.  High‐Performance Integrated Optics with Tellurite Glasses: Status and Prospects , 2012 .

[111]  A. Gopinath,et al.  Polarization-insensitive optical amplifiers in AlInGaAs , 2001, IEEE Photonics Technology Letters.

[112]  S. Corzine,et al.  InP Photonic Integrated Circuits , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[113]  M. Pollnau,et al.  Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. , 2010, Optics letters.

[114]  Ifor D. W. Samuel,et al.  Semiconducting polymer optical amplifiers , 2005, SPIE Optics + Photonics.

[115]  E H Bernhardi,et al.  Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+. , 2011, Optics letters.

[116]  K Ennser,et al.  Single-mode and high power waveguide lasers fabricated by ion-exchange. , 2008, Optics express.

[117]  D. Blumenthal,et al.  Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform. , 2014, Optics express.

[118]  Ray T. Chen,et al.  Dual-functional polymeric waveguide with optical amplification and electro-optic modulation , 1997, Photonics West.

[119]  Dimitri Geskus,et al.  Engineering lattice matching, doping level, and optical properties of KY(WO4)2:Gd, Lu, Yb layers for a cladding-side-pumped channel waveguide laser , 2013 .

[120]  D. C. Hanna,et al.  Upconversion, lifetime quenching, and ground-state bleaching in Nd3+:LiYF4 , 1998 .

[121]  Markus Pollnau,et al.  Organic solid‐state integrated amplifiers and lasers , 2012 .

[122]  Edward H. Bernhardi,et al.  Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers , 2009 .

[123]  Mk Meint Smit,et al.  Upconversion in Er-implanted Al2O3 waveguides , 1996 .

[124]  M. Pollnau,et al.  Dual-Frequency Distributed Feedback Laser With Optical Frequency Locked Loop for Stable Microwave Signal Generation , 2012, IEEE Photonics Technology Letters.

[125]  R. Moncorgé,et al.  2.8 W end-pumped Yb3+:LiYF4 waveguide laser. , 2013, Optics letters.

[126]  Z. Z. Ho,et al.  Single-mode Nd/sup 3+/-doped graded-index polymer waveguide amplifier , 1993, IEEE Photonics Technology Letters.

[127]  Anne C. Tropper,et al.  An efficient, diode-pumped, 2 μm Tm:YAG waveguide laser , 1997 .