Asymmetry-Induced Dynamics for a Class of Diode-Based Chaotic Circuits: A Case Study

We consider the modeling and asymmetry-induced dynamics for a class of chaotic circuits sharing the same feature of an antiparallel diodes pair as the nonlinear component. The simple autonomous jer...

[1]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[2]  Samuel Bowong,et al.  Practical finite-time synchronization of jerk systems: Theory and experiment , 2014 .

[3]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[4]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[5]  Qiang Lai,et al.  Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.

[6]  Julien Clinton Sprott,et al.  Amplitude control approach for chaotic signals , 2013 .

[7]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[8]  Qiang Lai,et al.  Dynamic analysis, circuit realization, control design and image encryption application of an extended Lü system with coexisting attractors , 2018, Chaos, Solitons & Fractals.

[9]  Jacques Kengne,et al.  Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors , 2018 .

[10]  Jacques Kengne,et al.  On the Dynamics of Chua’s oscillator with a smooth cubic nonlinearity: occurrence of multiple attractors , 2017 .

[11]  Sergey P. Kuznetsov,et al.  Co-existing hidden attractors in a radio-physical oscillator system , 2015 .

[12]  S. Bishop,et al.  Breaking the symmetry of the parametrically excited pendulum , 2006 .

[13]  J. Kengne,et al.  Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification , 2018 .

[14]  S. K. Dana,et al.  Homoclinic bifurcation in Chua’s circuit , 2005 .

[15]  Julien Clinton Sprott,et al.  Multistability in symmetric chaotic systems , 2015 .

[16]  A. G. Rigas,et al.  Time series analysis in chaotic diode resonator circuit , 2006 .

[18]  A. Pisarchik,et al.  Asymmetry in electrical coupling between neurons alters multistable firing behavior. , 2018, Chaos.

[19]  Jacques Kengne,et al.  Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors , 2018 .

[20]  Valentin Flunkert,et al.  Symmetry-breaking transitions in networks of nonlinear circuit elements , 2010, 1006.5042.

[21]  Jacques Kengne,et al.  Coexistence of Chaos with Hyperchaos, Period-3 Doubling Bifurcation, and Transient Chaos in the Hyperchaotic Oscillator with Gyrators , 2015, Int. J. Bifurc. Chaos.

[22]  Michael Peter Kennedy,et al.  Nonlinear analysis of the Colpitts oscillator and applications to design , 1999 .

[23]  Jan Danckaert,et al.  Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation , 2013 .

[24]  Sundarapandian Vaidyanathan,et al.  A Chaotic System With Equilibria Located on the Rounded Square Loop and Its Circuit Implementation , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[25]  Julien Clinton Sprott,et al.  A New Chaotic Jerk Circuit , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  U. Feudel,et al.  Control of multistability , 2014 .

[27]  Reiner Lauterbach,et al.  Heteroclinic cycles in dynamical systems with broken spherical symmetry , 1992 .

[28]  Qiang Lai,et al.  A New Chaotic System with Multiple Attractors: Dynamic Analysis, Circuit Realization and S-Box Design , 2017, Entropy.

[29]  Nikolay V. Kuznetsov,et al.  Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE , 2017, Commun. Nonlinear Sci. Numer. Simul..

[30]  Jacques Kengne,et al.  A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity , 2018 .

[31]  Jacques Kengne,et al.  Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit , 2016 .

[32]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[33]  A. Okniński,et al.  Symmetry Breaking and Fractal Dependence on Initial Conditions in Dynamical Systems: Ordinary Differential Equations of Thermal Convection , 1998 .

[34]  Zhujun Jing,et al.  Chaotic dynamics of Josephson equation driven by constant dc and ac forcings , 2001 .

[35]  Jacques Kengne,et al.  Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Chaotic Jerk Circuit , 2016, Int. J. Bifurc. Chaos.

[36]  Michael Small,et al.  On a Dynamical System with Multiple Chaotic attractors , 2007, Int. J. Bifurc. Chaos.

[37]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[38]  Bocheng Bao,et al.  Multistability induced by two symmetric stable node-foci in modified canonical Chua’s circuit , 2017 .

[39]  Jacques Kengne,et al.  A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos, offset-boosting, antimonotonicity, and coexisting multiple attractors , 2018, Chaos, Solitons & Fractals.

[40]  M. Sanjuán,et al.  Symmetry-breaking analysis for the general Helmholtz–Duffing oscillator , 2007 .

[41]  Qiang Lai,et al.  An Extremely Simple Chaotic System With Infinitely Many Coexisting Attractors , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  Steven R. Bishop,et al.  Symmetry-breaking in the response of the parametrically excited pendulum model , 2005 .

[43]  Jacques Kengne,et al.  Dynamic analysis of a novel jerk system with composite tanh-cubic nonlinearity: chaos, multi-scroll, and multiple coexisting attractors , 2019 .

[44]  Daniel J. Gauthier,et al.  Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis. , 1997, Chaos.

[45]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .