Electronic and structural properties of montmorillonite—a quantum chemical study

[1]  G. Stucky,et al.  Comparative Study of XPS and DFT with Reference to the Distributions of Al in Tetrahedral and Octahedral Sheets of Phyllosilicates , 1997 .

[2]  A. Chatterjee,et al.  Relationship between infrared spectra and isomorphous substitution in smectites: a computer simulation study. , 1996, Journal of molecular graphics.

[3]  C. Catlow,et al.  Chiral Recognition Among Tris(diimine)-Metal Complexes. 4. Atomistic Computer Modeling of a Monolayer of [Ru(bpy)3]2+ Intercalated into a Smectite Clay , 1995 .

[4]  A. Delville Monte Carlo Simulations of Surface Hydration: An Application to Clay Wetting , 1995 .

[5]  A. Chatterjee,et al.  Rationalizing the dependence of electronic properties on site geometry in ZSM-5 , 1994 .

[6]  J. Nicholas,et al.  Molecular modeling of the enthalpies of adsorption of hydrocarbons on smectite clay , 1994 .

[7]  B. Delley,et al.  Analytic energy derivatives in the numerical local‐density‐functional approach , 1991 .

[8]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[9]  B. Delley,et al.  Binding energy and electronic structure of small copper particles , 1983 .

[10]  J. Rishpon,et al.  Quantum-chemical modeling of smectite clays , 1982 .

[11]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[12]  Walter Thiel,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[13]  S. W. Bailey Cation ordering and pseudosymmetry in layer silicates , 1975 .

[14]  B. Theng The Chemistry of Clay-Organic Reactions , 2024 .