Phantom surface captures stereopsis

A phantom surface is a stereoscopic illusory area that can be seen in depth although there is no conventional stereoscopic cues [Liu, L., Stevenson, S.B., & Schor, C.M. (1994). Quantitative stereoscopic depth without binocular correspondence. Nature, 367, 66-69; Gillam, B. & Nakayama, K. (1999). Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone. Vision Research, 39, 109-112]. The phenomenon has been explained as an example of half-occlusion processing in which the visual system uses information about cyclopean occlusion structure of the visual world. We created stereo capture stereograms in which phantom surfaces changed the perceived depth of conventionally defined binocular textures. Because conventional stereoscopic matching is strongly affected by half-occlusion processing, we suggest that half-occlusion processing is an integral part of the early stereoscopic processing and solving of the correspondence problem.

[1]  Xin-Nian Wu,et al.  Stereo capture: local rematching driven by binocularly attended 3-D configuration rather than retinal images , 1998, Vision Research.

[2]  G. Nyman,et al.  Depth Asymmetry in da Vinci Stereopsis , 1996, Vision Research.

[3]  Martin Kaye,et al.  Stereopsis without binocular correlation , 1978, Vision Research.

[4]  G. Nyman,et al.  Three-dimensionally slanted illusory contours capture stereopsis , 1998, Vision Research.

[5]  W H Ehrenstein,et al.  Early Demonstrations of Subjective Contours, Amodal Completion, and Depth from Half-Occlusions: “Stereoscopic Experiments with Silhouettes” by Adolf von Szily (1921) , 1998, Perception.

[6]  Barbara Gillam Matching needed for stereopsis , 1995, Nature.

[7]  K Nakayama,et al.  Binocular visual surface perception. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Shinsuke Shimojo,et al.  Da vinci stereopsis: Depth and subjective occluding contours from unpaired image points , 1990, Vision Research.

[9]  Lei Liu,et al.  Quantitative stereoscopic depth without binocular correspondence , 1994, Nature.

[10]  K. Nakayama,et al.  Toward a general theory of stereopsis: binocular matching, occluding contours, and fusion. , 1994, Psychological review.

[11]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  B Julesz,et al.  Stereoscopic Illusion Based on the Proximity Principle , 1989, Perception.

[13]  D. Surmeier,et al.  Grouping of image fragments in primary visual cortex , 2022 .

[14]  B Gillam,et al.  The Role of Monocular Regions in Stereoscopic Displays , 1988, Perception.

[15]  Ken Nakayama,et al.  Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone , 1999, Vision Research.

[16]  I. Ohzawa,et al.  Encoding of binocular disparity by complex cells in the cat's visual cortex. , 1996, Journal of neurophysiology.

[17]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  Lawrence E. Arend,et al.  Narrow-band spatial mechanisms in apparent contrast matching , 1980, Vision Research.

[19]  P. Cavanagh,et al.  Subjective contours capture stereopsis , 1985, Nature.

[20]  J M Wolfe,et al.  Asymmetrical Effect of Crossed and Uncrossed Disparity on Stereoscopic Capture , 1993, Perception.

[21]  K. N. Ogle Researches in binocular vision. , 1950 .

[22]  Masanori Idesawa,et al.  Volume Perception with Binocular Viewing , 1997 .

[23]  G. J. Mitchison,et al.  Interpolation in stereoscopic matching , 1985, Nature.

[24]  Barton L. Anderson,et al.  The role of partial occlusion in stereopsis , 1994, Nature.

[25]  C. Schor,et al.  Binocular Matching of Dissimilar Features in Phantom Stereopsis , 1997, Vision Research.

[26]  K. Nakayama,et al.  Real world occlusion constraints and binocular rivalry , 1990, Vision Research.

[27]  P. Kellman,et al.  Strength of visual interpolation depends on the ratio of physically specified to total edge length , 1992, Perception & psychophysics.

[28]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  George Mather,et al.  The role of subjective contours in capture of stereopsis , 1989, Vision Research.

[30]  P. Lennie Single Units and Visual Cortical Organization , 1998, Perception.

[31]  W. Gogel,et al.  THE TENDENCY TO SEE OBJECTS AS EQUIDISTANT AND ITS INVERSE RELATION TO LATERAL SEPARATION , 1956 .

[32]  G. Nyman,et al.  Occlusion Constraints and Stereoscopic Slant , 1997, Perception.

[33]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.