Nanoscale Effects on Heterojunction Electron Gases in GaN/AlGaN Core/Shell Nanowires

The electronic properties of heterojunction electron gases formed in GaN/AlGaN core/shell nanowires with hexagonal and triangular cross sections are studied theoretically. We show that at nanoscale dimensions, the nonpolar hexagonal system exhibits degenerate quasi-one-dimensional electron gases at the hexagon corners, which transition to a core-centered electron gas at lower doping. In contrast, polar triangular core/shell nanowires show either a nondegenerate electron gas on the polar face or a single quasi-one-dimensional electron gas at the corner opposite the polar face, depending on the termination of the polar face. More generally, our results indicate that electron gases in closed nanoscale systems are qualitatively different from their bulk counterparts.

[1]  Tsuneya Ando,et al.  Self-Consistent Results for a GaAs/Al x Ga 1-x As Heterojunction. I. Subband Structure and Light-Scattering Spectra , 1982 .

[2]  A. Greytak,et al.  Core–Shell Nanowire Light‐Emitting Diodes , 2005 .

[3]  H. Renevier,et al.  The structural properties of GaN/AlN core–shell nanocolumn heterostructures , 2010, Nanotechnology.

[4]  George T. Wang,et al.  Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal–organic chemical vapour deposition , 2006 .

[5]  J. Gilman,et al.  Nanotechnology , 2001 .

[6]  G. Guo,et al.  Tuning linear and nonlinear optical properties of wurtzite GaN by c-axial stress , 2009, 0909.1350.

[7]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[8]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[9]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[10]  Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1−xN quantum dots , 2003, cond-mat/0310363.

[11]  Quantum Point Contacts , 1996, cond-mat/0512609.

[12]  L. Samuelson,et al.  Growth and Optical Properties of Strained GaAs−GaxIn1-xP Core−Shell Nanowires , 2005 .

[13]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[14]  Charles M Lieber,et al.  One-dimensional hole gas in germanium/silicon nanowire heterostructures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Hadis Morko,et al.  Handbook of Nitride Semiconductors and Devices , 2008 .

[16]  B. Jogai Free electron distribution in AlGaN/GaN heterojunction field-effect transistors , 2002 .

[17]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[18]  J. Freitas,et al.  Experimental study of plasmonically enhanced GaN nanowire light emitters , 2008 .

[19]  A. Nduwimana,et al.  Spatial carrier confinement in core-shell and multishell nanowire heterostructures. , 2008, Nano letters.

[20]  Long-Qing Chen,et al.  Equilibrium strain-energy analysis of coherently strained core- shell nanowires , 2008 .

[21]  M. Spencer,et al.  On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface , 2005 .

[22]  Peter M. Asbeck,et al.  A numerical Schrödinger–Poisson solver for radially symmetric nanowire core–shell structures , 2006 .

[23]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[24]  Lars Hedin,et al.  Explicit local exchange-correlation potentials , 1971 .

[25]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.