Testing a Precise Null Hypothesis: The Case of Lindley’s Paradox
暂无分享,去创建一个
[1] Jacob Cohen. The earth is round (p < .05) , 1994 .
[2] K. Popper,et al. Logik der Forschung , 1935 .
[3] John Earman,et al. Bayes or bust , 1992 .
[4] W. Jefferys. Bayesian Analysis of Random Event Generator Data , 1990 .
[5] K. Popper,et al. Conjectures and refutations;: The growth of scientific knowledge , 1972 .
[6] A. F. M. Smith,et al. Integrated Objective Bayesian Estimation and Hypothesis Testing , 2011 .
[7] S. Goodman,et al. Toward Evidence-Based Medical Statistics. 2: The Bayes Factor , 1999, Annals of Internal Medicine.
[8] R. Tweney. Error and the growth of experimental knowledge , 1998 .
[9] J. Bernardo. Nested Hypothesis Testing: The Bayesian Reference Criterion , 2001 .
[10] D. Lindley. A STATISTICAL PARADOX , 1957 .
[11] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[12] On After-Trial Properties of Best Neyman-Pearson Confidence Intervals , 1981, Philosophy of Science.
[13] A. Fagot-Largeault. Popper, Karl R , 2005 .
[14] J. Berger,et al. Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .
[15] K. Popper,et al. Conjectures and refutations;: The growth of scientific knowledge , 1972 .
[16] J. Berger,et al. Testing Precise Hypotheses , 1987 .
[17] S. Goodman. Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy , 1999, Annals of Internal Medicine.