Generating epsilon-efficient solutions in multiobjective programming

Scalarization approaches to purposely generating e-efficient solutions of multiobjective programs are investigated and a generic procedure for computing these solutions is proposed and illustrated with an example. Real-life decision making situations in which the solutions are of significance are described.

[1]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[2]  J. C. Liu,et al.  ϵ-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function , 1996 .

[3]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[4]  D. J. White,et al.  Epsilon Dominance and Constraint Partitioning in Multiple Objective Problems , 1998, J. Glob. Optim..

[5]  J. Dutta,et al.  ON APPROXIMATE MINIMA IN VECTOR OPTIMIZATION , 2001 .

[6]  Sien Deng On Approximate Solutions in Convex Vector Optimization , 1997 .

[7]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[8]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[9]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[10]  Emilio Carrizosa,et al.  A D.C. biobjective location model , 2002, J. Glob. Optim..

[11]  J. Current,et al.  Theory and methodology , 1991 .

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[13]  H. P. Benson,et al.  Existence of efficient solutions for vector maximization problems , 1978 .

[14]  Ju Airgen Guddat,et al.  Multiobjective and stochastic optimization based on parametric optimization , 1987 .

[15]  D. J. White,et al.  Epsilon-dominating solutions in mean-variance portfolio analysis , 1998, Eur. J. Oper. Res..

[16]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[17]  Manohar P. Kamat,et al.  Multicriteria Optimization In Engineering: A Tutorial And Survey , 1993 .

[18]  Tamaki Tanaka,et al.  Approximately Efficient Solutions in Vector Optimization , 1996 .

[19]  I. Vályi Approximate solutions of vector optimization problems , 1985 .

[20]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[21]  Evripidis Bampis,et al.  On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems , 2003, Theor. Comput. Sci..

[22]  Christiane Tammer Stability results for approximately efficient solutions , 1994 .

[23]  Kazunori Yokoyama,et al.  Epsilon Approximate Solutions for Multiobjective Programming Problems , 1996 .

[24]  Günther Ruhe,et al.  ε-Optimality for bicriteria programs and its application to minimum cost flows , 1990, Computing.

[25]  Ralph E. Steuer Multiple criteria optimization , 1986 .

[26]  J. C. Liu e-Pareto Optimality for Nondifferentiable Multiobjective Programming via Penalty Function , 1996 .

[27]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[28]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[29]  D. J. White,et al.  Epsilon efficiency , 1986 .

[30]  Georges M. Fadel,et al.  Epsilon-Optimality in Bi-Criteria Optimization , 2002 .