Algorithms for the quasiconvex feasibility problem

We study the behavior of subgradient projections algorithms for the quasiconvex feasibility problem of finding a point x^*@?R^n that satisfies the inequalities f"1(x^*)=<0,f"2(x^*)=<0,...,f"m(x^*)=<0, where all functions are continuous and quasiconvex. We consider the consistent case when the solution set is nonempty. Since the Fenchel-Moreau subdifferential might be empty we look at different notions of the subdifferential and determine their suitability for our problem. We also determine conditions on the functions, that are needed for convergence of our algorithms. The quasiconvex functions on the left-hand side of the inequalities need not be differentiable but have to satisfy a Lipschitz or a Holder condition.

[1]  L. Vandenberghe,et al.  Quasiconvex Optimization and Location Theory , 1998 .

[2]  Igor V. Konnov,et al.  On Convergence Properties of a Subgradient Method , 2003, Optim. Methods Softw..

[3]  Sankatha Prasad Singh,et al.  Approximation Theory, Spline Functions and Applications , 1992 .

[4]  Gilbert Crombez Non-monotoneous parallel iteration for solving convex feasibility problems , 2003, Kybernetika.

[5]  Yair Censor,et al.  Block-Iterative Algorithms with Underrelaxed Bregman Projections , 2002, SIAM J. Optim..

[6]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[7]  I. I. Eremin On systems of inequalities with convex functions in the left sides , 1970 .

[8]  Lúcio T. Santos,et al.  A parallel subgradient projections method for the convex feasibility problem , 1987 .

[9]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[10]  F. Plastria Lower subdifferentiable functions and their minimization by cutting planes , 1985 .

[11]  I. Stancu-Minasian Fractional Programming in The Complex Space , 1997 .

[12]  J. Penot Are Generalized Derivatives Sseful for Generalized Convex Functions , 1998 .

[13]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[14]  C Tofallis,et al.  Fractional Programming: Theory, Methods and Applications , 1997, J. Oper. Res. Soc..

[15]  I. I. Eremin Fejér mappings and convex programming , 1969 .

[16]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[17]  Metodos de projeção do subgradiente para o problema de factibilidade convexa , 1985 .

[18]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[19]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[20]  Frank Plastria The minimization of lower subdifferentiable functions under nonlinear constraints: An all feasible cutting plane algorithm , 1988 .

[21]  Juan Enrique Martínez-Legaz,et al.  Lower subdifferentiability of quadratic functions , 1993, Math. Program..

[22]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[23]  Yair Censor On variable block algebraic reconstruction techniques , 1991 .

[24]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[25]  W. Hager,et al.  Large Scale Optimization : State of the Art , 1993 .

[26]  Gabor T. Herman,et al.  Algebraic reconstruction techniques can be made computationally efficient [positron emission tomography application] , 1993, IEEE Trans. Medical Imaging.

[27]  Gabor T. Herman,et al.  Image reconstruction from projections : the fundamentals of computerized tomography , 1980 .

[28]  Y. Ye,et al.  On the Complexity of a Column Generation Algorithm for Convex or Quasiconvex Feasibility Problems , 1994 .

[29]  Y. Censor Iterative Methods for the Convex Feasibility Problem , 1984 .

[30]  John W. Chinneck The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs , 2004, INFORMS J. Comput..

[31]  J. Hiriart-Urruty,et al.  Trends in Mathematical Optimization , 1987 .

[32]  Juan Enrique Martínez-Legaz,et al.  On lower subdifferentiable functions , 1988 .

[33]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[34]  Yair Censor,et al.  Parallel application of block-iterative methods in medical imaging and radiation therapy , 1988, Math. Program..

[35]  J. Martínez-Legaz,et al.  Fractional programming by lower subdifferentiability techniques , 1991 .

[36]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[37]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[38]  Juan Enrique Martínez-Legaz,et al.  Lower subdifferentiability in minimax fractional programming , 1999 .

[39]  Gilbert Crombez,et al.  Finding common fixed points of a class of paracontractions , 2004 .

[40]  Krzysztof C. Kiwiel,et al.  Convergence and efficiency of subgradient methods for quasiconvex minimization , 2001, Math. Program..