Manipulating droplet jumping behaviors on hot substrates with surface topography by controlling vapor bubble growth: from vibration to explosion

A major challenge in

[1]  Feng Zhou,et al.  Optothermally Programmable Liquids with Spatiotemporal Precision and Functional Complexity , 2022, Advanced materials.

[2]  Ching-Wen Lo,et al.  Reducing Contact Time of Droplets Impacting Superheated Hydrophobic Surfaces. , 2022, Small.

[3]  Fan Zhou,et al.  Pancake Jumping of Sessile Droplets , 2022, Advanced science.

[4]  G. Graeber,et al.  Leidenfrost droplet trampolining , 2021, Nature Communications.

[5]  M. Gradeck,et al.  Spheroidal droplet deformation, oscillation and breakup in uniform outer flow , 2020, Journal of Fluid Mechanics.

[6]  I. Mudawar,et al.  Review of pool boiling enhancement by surface modification , 2019, International Journal of Heat and Mass Transfer.

[7]  C. Clanet,et al.  Leidenfrost wheels , 2018, Nature Physics.

[8]  R. Mohammadi,et al.  Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures. , 2018, Journal of colloid and interface science.

[9]  Jiangtao Cheng,et al.  Analyzing the Molecular Kinetics of Water Spreading on Hydrophobic Surfaces via Molecular Dynamics Simulation , 2017, Scientific Reports.

[10]  Z. Dong,et al.  Reducing the contact time using macro anisotropic superhydrophobic surfaces -effect of parallel wire spacing on the drop impact , 2017 .

[11]  Isao Shimoyama,et al.  Depinning-Induced Capillary Wave during the Sliding of a Droplet on a Textured Surface. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[12]  Dimos Poulikakos,et al.  Spontaneous droplet trampolining on rigid superhydrophobic surfaces , 2015, Nature.

[13]  Hua Li,et al.  Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications , 2014 .

[14]  Tiezheng Qian,et al.  Pancake bouncing on superhydrophobic surfaces , 2014, Nature Physics.

[15]  M. Tiwari,et al.  Rational nanostructuring of surfaces for extraordinary icephobicity. , 2014, Nanoscale.

[16]  Jiwoo Hong,et al.  Electrowetting-induced droplet detachment from hydrophobic surfaces. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[17]  Kripa K. Varanasi,et al.  Reducing the contact time of a bouncing drop , 2013, Nature.

[18]  K. Varanasi,et al.  Increasing Leidenfrost point using micro-nano hierarchical surface structures , 2013 .

[19]  Jiangtao Cheng,et al.  Condensation heat transfer on two-tier superhydrophobic surfaces , 2012 .

[20]  Howard A Stone,et al.  Ice-phobic surfaces that are wet. , 2012, ACS nano.

[21]  Guangming Liu,et al.  Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  Dimos Poulikakos,et al.  Are superhydrophobic surfaces best for icephobicity? , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  N. Patankar,et al.  Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. , 2011, Physical review letters.

[24]  Jiangtao Cheng,et al.  Active thermal management of on-chip hot spots using EWOD-driven droplet microfluidics , 2010 .

[25]  J. Boreyko,et al.  Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting. , 2009, Physical review letters.

[26]  V. Carey Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Third Edition , 2020 .

[27]  Jungho Kim Spray cooling heat transfer: The state of the art , 2007 .

[28]  M. Tulin On the transport of energy in water waves , 2007 .

[29]  R. Blossey Self-cleaning surfaces — virtual realities , 2003, Nature materials.

[30]  C. Clanet,et al.  Water spring: A model for bouncing drops , 2002, cond-mat/0212151.

[31]  John D. Bernardin,et al.  The Leidenfrost point : Experimental study and assessment of existing models , 1999 .

[32]  S. Bingulac,et al.  Steady‐State Analysis of the Multiple Effect Evaporation Desalination Process , 1998 .

[33]  H. Merte,et al.  The Origin of the Dynamic Growth of Vapor Bubbles Related to Vapor Explosions , 1998 .