What Happens to a Manifold Under a Bi-Lipschitz Map?

We study geometric and topological properties of the image of a smooth submanifold of $$\mathbb {R}^{n}$$Rn under a bi-Lipschitz map to $$\mathbb {R}^{m}$$Rm. In particular, we characterize how the dimension, diameter, volume, and reach of the embedded manifold relate to the original. Our main result establishes a lower bound on the reach of the embedded manifold in the case where $$m \le n$$m≤n and the bi-Lipschitz map is linear. We discuss implications of this work in signal processing and machine learning, where bi-Lipschitz maps on low-dimensional manifolds have been constructed using randomized linear operators.

[1]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[2]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[3]  F. Morgan Riemannian geometry : a beginner's guide , 1998 .

[4]  R. Howard Blaschke's rolling theorem for manifolds¶with boundary , 1999 .

[5]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[6]  David S. Broomhead,et al.  The Whitney Reduction Network: A Method for Computing Autoassociative Graphs , 2001, Neural Computation.

[7]  F. Chazal,et al.  Stability and Finiteness Properties of Medial Axis and Skeleton , 2004 .

[8]  Chinmay Hegde,et al.  Random Projections for Manifold Learning , 2007, NIPS.

[9]  Richard G. Baraniuk,et al.  The smashed filter for compressive classification and target recognition , 2007, Electronic Imaging.

[10]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[11]  Kenneth L. Clarkson,et al.  Tighter bounds for random projections of manifolds , 2008, SCG '08.

[12]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[13]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[14]  John M. Lee Manifolds and Differential Geometry , 2009 .

[15]  Richard G. Baraniuk,et al.  Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..

[16]  John C. Wood,et al.  Manifolds and differential geometry (Graduate Studies in Mathematics 107) , 2010 .

[17]  Parikshit Shah,et al.  Iterative projections for signal identification on manifolds: Global recovery guarantees , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Nakul Verma,et al.  Distance Preserving Embeddings for General n-Dimensional Manifolds , 2012, COLT.

[19]  Mauro Maggioni,et al.  Approximation of Points on Low-Dimensional Manifolds Via Random Linear Projections , 2012, ArXiv.

[20]  Michael B. Wakin,et al.  New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements , 2013, ArXiv.

[21]  Michael B. Wakin,et al.  Stable Manifold Embeddings With Structured Random Matrices , 2012, IEEE Journal of Selected Topics in Signal Processing.

[22]  Chinmay Hegde,et al.  NuMax: A Convex Approach for Learning Near-Isometric Linear Embeddings , 2015, IEEE Transactions on Signal Processing.

[23]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.