Application of the Improved POA-RF Model in Predicting the Strength and Energy Absorption Property of a Novel Aseismic Rubber-Concrete Material

The application of aseismic materials in foundation engineering structures is an inevitable trend and research hotspot of earthquake resistance, especially in tunnel engineering. In this study, the pelican optimization algorithm (POA) is improved using the Latin hypercube sampling (LHS) method and the Chaotic mapping (CM) method to optimize the random forest (RF) model for predicting the aseismic performance of a novel aseismic rubber-concrete material. Seventy uniaxial compression tests and seventy impact tests were conducted to quantify this aseismic material performance, i.e., strength and energy absorption properties and four other artificial intelligence models were generated to compare the predictive performance with the proposed hybrid RF models. The performance evaluation results showed that the LHSPOA-RF model has the best prediction performance among all the models for predicting the strength and energy absorption property of this novel aseismic concrete material in both the training and testing phases (R2: 0.9800 and 0.9108, VAF: 98.0005% and 91.0880%, RMSE: 0.7057 and 1.9128, MAE: 0.4461 and 0.7364; R2: 0.9857 and 0.9065, VAF: 98.5909% and 91.3652%, RMSE: 0.5781 and 1.8814, MAE: 0.4233 and 0.9913). In addition, the sensitive analysis results indicated that the rubber and cement are the most important parameters for predicting the strength and energy absorption properties, respectively. Accordingly, the improved POA-RF model not only is proven as an effective method to predict the strength and energy absorption properties of aseismic materials, but also this hybrid model provides a new idea for assessing other aseismic performances in the field of tunnel engineering.

[1]  Q. Sheng,et al.  Experimental investigation on the mechanical and damping properties of rubber-sand-concrete prepared with recycled waste tires for aseismic isolation layer , 2023, Soil Dynamics and Earthquake Engineering.

[2]  Y. Gui,et al.  A Kernel Extreme Learning Machine-Grey Wolf Optimizer (KELM-GWO) Model to Predict Uniaxial Compressive Strength of Rock , 2022, Applied Sciences.

[3]  Jiamin Zhang,et al.  Applying a novel slime mould algorithm- based artificial neural network to predict the settlement of a single footing on a soft soil reinforced by rigid inclusions , 2022, Mechanics of Advanced Materials and Structures.

[4]  D. Jahed Armaghani,et al.  Developing hybrid ELM-ALO, ELM-LSO and ELM-SOA models for predicting advance rate of TBM , 2022, Transportation Geotechnics.

[5]  M. Khandelwal,et al.  COSMA-RF: New intelligent model based on chaos optimized slime mould algorithm and random forest for estimating the peak cutting force of conical picks , 2022, Transportation Geotechnics.

[6]  M. Monjezi,et al.  Six Novel Hybrid Extreme Learning Machine–Swarm Intelligence Optimization (ELM–SIO) Models for Predicting Backbreak in Open-Pit Blasting , 2022, Natural Resources Research.

[7]  Y. Qiu,et al.  Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations , 2022, Tunnelling and Underground Space Technology.

[8]  Tong Lu,et al.  Compressive Strength Prediction of Rubber Concrete Based on Artificial Neural Network Model with Hybrid Particle Swarm Optimization Algorithm , 2022, Materials.

[9]  Yanqi Wu,et al.  Prediction and uncertainty quantification of compressive strength of high‐strength concrete using optimized machine learning algorithms , 2022, Structural Concrete.

[10]  Abdeliazim Mustafa Mohamed,et al.  Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF , 2022, Polymers.

[11]  P. Trojovský,et al.  Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications , 2022, Sensors.

[12]  Chuanqi Li,et al.  Application of Six Metaheuristic Optimization Algorithms and Random Forest in the uniaxial compressive strength of rock prediction , 2022, Appl. Soft Comput..

[13]  Barry Lehane,et al.  Compressive strength of rubberized concrete: Regression and GA-BPNN approaches using ultrasonic pulse velocity , 2021, Construction and Building Materials.

[14]  Branavan Arulmoly,et al.  Pertinence of alternative fine aggregates for concrete and mortar: a brief review on river sand substitutions , 2021, Australian Journal of Civil Engineering.

[15]  Qingzi Luo,et al.  Experimental study on the energy absorption characteristics of viscoelastic damping layers , 2021, IOP Conference Series: Earth and Environmental Science.

[16]  E. Nyarko,et al.  Modeling of Compressive Strength of Self-Compacting Rubberized Concrete Using Machine Learning , 2021, Materials.

[17]  Imran Mehmood,et al.  Comparative Study of Supervised Machine Learning Algorithms for Predicting the Compressive Strength of Concrete at High Temperature , 2021, Materials.

[18]  A. Gregori,et al.  Predicting the Compressive Strength of Rubberized Concrete Using Artificial Intelligence Methods , 2021, Sustainability.

[19]  Guorong Wang,et al.  Forecasting energy consumption of long-distance oil products pipeline based on improved fruit fly optimization algorithm and support vector regression , 2021 .

[20]  Shih-Yung Hu,et al.  Energy Absorption Characteristics of PVC Coarse Aggregate Concrete under Impact Load , 2021 .

[21]  Hai-Bang Ly,et al.  Prediction Compressive Strength of Concrete Containing GGBFS using Random Forest Model , 2021, Advances in Civil Engineering.

[22]  H. Adnan,et al.  Recycling of plastic box waste in the concrete mixture as a percentage of fine aggregate , 2021 .

[23]  Changshun Liu,et al.  Prediction of Rubber Fiber Concrete Strength Using Extreme Learning Machine , 2021, Frontiers in Materials.

[24]  L T M Dat,et al.  An Artificial intelligence approach for predicting compressive strength of eco-friendly concrete containing waste tire rubber , 2020, IOP Conference Series: Earth and Environmental Science.

[25]  J. Bullard,et al.  Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete , 2020 .

[26]  M. A. Keerio,et al.  Effect of Silica Fume as Cementitious Material and Waste Glass as Fine Aggregate Replacement Constituent on Selected Properties of Concrete , 2020, Silicon.

[27]  Wei Huang,et al.  Strength reduction factor of crumb rubber as fine aggregate replacement in concrete , 2020 .

[28]  Jian Zhou,et al.  Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques , 2020 .

[29]  Allan Melvin Andrew,et al.  A Hybrid Modified Method of the Sine Cosine Algorithm Using Latin Hypercube Sampling with the Cuckoo Search Algorithm for Optimization Problems , 2020 .

[30]  Rayed Alyousef,et al.  A Comparative Study of Random Forest and Genetic Engineering Programming for the Prediction of Compressive Strength of High Strength Concrete (HSC) , 2020, Applied Sciences.

[31]  Ghasan Fahim Huseien,et al.  Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes , 2020 .

[32]  Ahmed S. Eisa,et al.  Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams , 2020 .

[33]  Hongfang Lu,et al.  Machine learning approaches for estimation of compressive strength of concrete , 2020, The European Physical Journal Plus.

[34]  Dong Li,et al.  Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model , 2020 .

[35]  Mahdi Shariati,et al.  A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement , 2020, Engineering with Computers.

[36]  Wensu Chen,et al.  Dynamic compressive properties of lightweight rubberized concrete , 2020 .

[37]  Chao Wang,et al.  New brain tumor classification method based on an improved version of whale optimization algorithm , 2020, Biomed. Signal Process. Control..

[38]  Manu Vardhan,et al.  An adaptive inertia weight teaching-learning-based optimization algorithm and its applications , 2020 .

[39]  Deyu Qian,et al.  Prediction of the Strength of Rubberized Concrete by an Evolved Random Forest Model , 2019 .

[40]  S. Siddique,et al.  Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN , 2019 .

[41]  Hongyan Ma,et al.  Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models , 2019, Journal of Materials in Civil Engineering.

[42]  Zhongzhi Shi,et al.  Chaotic particle swarm optimization with sigmoid-based acceleration coefficients for numerical function optimization , 2019, Swarm Evol. Comput..

[43]  N. Banthia,et al.  Effect of rubber insertion on impact behavior of multilayer steel fiber reinforced concrete bulletproof panel , 2019, Construction and Building Materials.

[44]  Mahdi Hasanipanah,et al.  Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting , 2019, Engineering with Computers.

[45]  G. Karimi,et al.  Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite , 2019, Construction and Building Materials.

[46]  Marijana Hadzima-Nyarko,et al.  Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks , 2019, Materials.

[47]  Liang Gao,et al.  A modified comprehensive learning particle swarm optimizer and its application in cylindricity error evaluation problem. , 2019, Mathematical biosciences and engineering : MBE.

[48]  Jiaqing Wang,et al.  Investigation of properties and performances of Polyvinyl Alcohol (PVA) fiber-reinforced rubber concrete , 2018, Construction and Building Materials.

[49]  C. Issa,et al.  Rubber concrete: Mechanical and dynamical properties , 2018, Case Studies in Construction Materials.

[50]  Xuehua Zhao,et al.  An improved grasshopper optimization algorithm with application to financial stress prediction , 2018, Applied Mathematical Modelling.

[51]  Francesca Pianosi,et al.  Distribution-based sensitivity analysis from a generic input-output sample , 2018, Environ. Model. Softw..

[52]  Songfeng Lu,et al.  Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization , 2018, Expert Syst. Appl..

[53]  H. Hao,et al.  Axial impact behavior and energy absorption of rubberized concrete with/without fiber-reinforced polymer confinement , 2018, International Journal of Protective Structures.

[54]  Sankalap Arora,et al.  Chaotic whale optimization algorithm , 2018, J. Comput. Des. Eng..

[55]  Rahali Bachir,et al.  Using Artificial Neural Networks Approach to Estimate Compressive Strength for Rubberized Concrete , 2018 .

[56]  Provas Kumar Roy,et al.  Oppositional based grey wolf optimization algorithm for economic dispatch problem of power system , 2017, Ain Shams Engineering Journal.

[57]  Redouane Rebouh,et al.  A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure , 2017 .

[58]  Min-Yuan Cheng,et al.  Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines , 2016 .

[59]  Francesca Pianosi,et al.  A simple and efficient method for global sensitivity analysis based on cumulative distribution functions , 2015, Environ. Model. Softw..

[60]  Zhang Qiant,et al.  Double subgroups fruit fly optimization algorithm with characteristics of Levy flight , 2015 .

[61]  Sirapat Chiewchanwattana,et al.  An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets , 2014, 2014 International Computer Science and Engineering Conference (ICSEC).

[62]  J. Anderson,et al.  Foraging behavior of American white pelicans {\it Pelecanus erythrorhyncos\/} in western Nevada , 1991 .