Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

Abstract. Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

[1]  Fouad Badran,et al.  Improving the parameters of a global ocean biogeochemical model via variational assimilation of in situ data at five time series stations , 2011 .

[2]  Peter G. Challenor,et al.  Addressing the impact of environmental uncertainty in plankton model calibration with a dedicated software system: the Marine Model Optimization Testbed (MarMOT 1.1 alpha) , 2011 .

[3]  Ken Caldeira,et al.  Atmospheric carbon dioxide removal: long-term consequences and commitment , 2010 .

[4]  David P. Keller,et al.  Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario , 2014, Nature Communications.

[5]  Ulrike Löptien,et al.  Constraining parameters in marine pelagic ecosystem models – is it actually feasible with typical observations of standing stocks? , 2015 .

[6]  Thomas Slawig,et al.  Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation , 2010 .

[7]  Matthew Dunn Introduction to the modelling of marine ecosystems, W. Fennel, T. Neumann, in: Elsevier Oceanography Series, vol. 72. (2004), (paperback), GBP 48, US $ 81.95, Eur 69, 297 pp., ISBN: 0-444-51704-9 , 2006 .

[8]  Richard J. Matear,et al.  Parameter optimisation of a marine ecosystem model at two contrasting stations in the Sub-Antarctic Zone , 2011 .

[9]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 1. Sensitivity to advection numerics and mixed layer physics , 1999 .

[10]  G. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS data , 1996 .

[11]  M. J. D. Powell,et al.  Least Squares Smoothing of Univariate Data to achieve Piecewise Monotonicity , 1991 .

[12]  Andreas Oschlies,et al.  Simultaneous data-based optimization of a 1D-ecosystem model at three locations in the North Atlantic: Part I— Method and parameter estimates , 2003 .

[13]  M. Ouberdous,et al.  Assimilation of SeaWiFS data in a coupled physical biological model of the Adriatic Sea , 2003 .

[14]  Katja Fennel,et al.  Estimating time-dependent parameters for a biological ocean model using an emulator approach , 2012 .

[15]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[16]  Thomas R. Anderson,et al.  Plankton functional type modelling : running before we can walk? , 2005 .

[17]  Marc C. Kennedy,et al.  Case studies in Gaussian process modelling of computer codes , 2006, Reliab. Eng. Syst. Saf..

[18]  Ulrike Löptien,et al.  Simulating natural carbon sequestration in the Southern Ocean: on uncertainties associated with eddy parameterizations and iron deposition , 2016 .

[19]  J. Tjiputra,et al.  Assimilation of seasonal chlorophyll and nutrient data into an adjoint three‐dimensional ocean carbon cycle model: Sensitivity analysis and ecosystem parameter optimization , 2007 .

[20]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[21]  James G. Richman,et al.  Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .

[22]  George C. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS and OWSI data , 1999 .

[23]  Ken Caldeira,et al.  Atmospheric CO2 stabilization and ocean acidification , 2008 .

[24]  Ulrike Löptien,et al.  Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models , 2013 .

[25]  I. Charpentier,et al.  Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station , 2003 .

[26]  Meric A. Srokosz,et al.  Split-domain calibration of an ecosystem model using satellite ocean colour data , 2004 .

[27]  Malte Prieß,et al.  Marine ecosystem model calibration with real data using enhanced surrogate-based optimization , 2013, J. Comput. Sci..

[28]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[29]  M. Friedrichs,et al.  Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea , 2017 .

[30]  Xianqing Lv,et al.  Data assimilation in a simple marine ecosystem model based on spatial biological parameterizations , 2009 .

[31]  E. Hofmann,et al.  Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .

[32]  Nicholas R. Bates,et al.  Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry , 2001 .

[33]  Thomas Slawig,et al.  Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling , 2016 .

[34]  G. Evans,et al.  Defining misfit between biogeochemical models and data sets , 2003 .

[35]  M. Friedrichs Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the Central Equatorial Pacific Ocean , 2001 .

[36]  Marjorie A. M. Friedrichs,et al.  Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data , 2006 .

[37]  David Archer,et al.  Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure , 2009 .

[38]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[39]  Andreas Oschlies,et al.  Towards an assessment of simple global marine biogeochemical models of different complexity , 2010 .

[40]  Anand Srivastav,et al.  Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0) , 2016 .

[41]  F. D’Ortenzio,et al.  The colour of the Mediterranean Sea: Global versus regional bio-optical algorithms evaluation and implication for satellite chlorophyll estimates , 2007 .

[42]  Samar Khatiwala,et al.  A computational framework for simulation of biogeochemical tracers in the ocean , 2007 .

[43]  Marjorie A. M. Friedrichs A data assimilative marine ecosystem model of the central equatorial Pacific: Numerical twin experiments , 2001 .

[44]  G. Almandoz,et al.  Evaluation of SeaWiFS and MODIS chlorophyll‐a products in the Argentinean Patagonian Continental Shelf (38° S–55° S) , 2009 .

[45]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[46]  I. C. Demetriou Discrete piecewise monotonic approximation by a strictly convex distance function , 1995 .

[47]  Watson W. Gregg,et al.  Skill Assessment in Ocean Biological Data Assimilation , 2009 .

[48]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[49]  Andreas Oschlies,et al.  Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method , 2001 .

[50]  Jens Schröter,et al.  Testing a marine ecosystem model: Sensitivity analysis and parameter optimization , 2001 .

[51]  A Oschlies,et al.  Uncertainty in the response of transpiration to CO2 and implications for climate change , 2015 .

[52]  W. Wilbur,et al.  Isotonic Regression under Lipschitz Constraint , 2009, Journal of optimization theory and applications.

[53]  C. Stow,et al.  Skill Assessment for Coupled Biological/Physical Models of Marine Systems. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[54]  A. Gnanadesikan,et al.  Regional impacts of iron-light colimitation in a global biogeochemical model , 2009 .

[55]  M. Friedrichs,et al.  The assimilation of satellite‐derived data into a one‐dimensional lower trophic level marine ecosystem model , 2014 .

[56]  Ulrike Löptien,et al.  Steady states and sensitivities of commonly used pelagic ecosystem model components , 2011 .

[57]  J. Vallino Improving marine ecosystem models: Use of data assimilation and mesocosm experiments , 2000 .

[58]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data , 2000 .

[59]  Thomas Slawig,et al.  Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D – Part 1: Simulation Package v0.3.2 , 2016 .

[60]  Slawomir Koziel,et al.  Accelerated parameter identification in a 3D marine biogeochemical model using surrogate-based optimization , 2013 .

[61]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[62]  U. Löptien,et al.  Effects of parameter indeterminacy in pelagic biogeochemical modules of Earth System Models on projections into a warming future: The scale of the problem , 2017 .