Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture

Let Í2 be a bounded open set of E" (n > 1) with "fractal" boundary T . We extend Hermann Weyl's classical theorem by establishing a precise remainder estimate for the asymptotics of the eigenvalues of positive elliptic operators of order 2m (m > 1) on Í2 . We consider both Dirichlet and Neumann boundary conditions. Our estimate—which is expressed in terms of the Minkowski rather than the Hausdorff dimension of Y—specifies and partially solves the Weyl-Berry conjecture for the eigenvalues of the Laplacian. Berry's conjecture—which extends to "fractals" Weyl's conjecture—is closely related to Kac's question "Can one hear the shape of a drum?"; further, it has significant physical applications, for example to the scattering of waves by "fractal" surfaces or the study of porous media. We also deduce from our results new remainder estimates for the asymptotics of the associated "partition function" (or trace of the heat semigroup). In addition, we provide examples showing that our remainder estimates are sharp in every possible "fractal" (i.e., Minkowski) dimension. The techniques used in this paper belong to the theory of partial differential equations, the calculus of variations, approximation theory and—to a lesser extent—geometric measure theory. An interesting aspect of this work is that it establishes new connections between spectral and "fractal" geometry.

[1]  Eberhard R. Hilf,et al.  Spectra of Finite Systems , 1980 .

[2]  J. Fleckinger,et al.  Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights , 1987 .

[3]  L. Hörmander,et al.  The spectral function of an elliptic operator , 1968 .

[4]  R. Courant Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .

[5]  John Hawkes,et al.  Hausdorff Measure, Entropy, and the Independence of Small Sets , 1974 .

[6]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[7]  J. Kahane,et al.  Fractals : dimensions non entières et applications , 1987 .

[8]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[9]  H. Weyl Ueber die asymptotische Verteilung der Eigenwerte , 1911 .

[10]  M. V. Berry,et al.  Distribution of Modes in Fractal Resonators , 1979 .

[11]  Richard B. Melrose,et al.  Weyl''s conjecture for manifolds with concave boundary , 1980 .

[12]  V. Ya. Ivrii,et al.  Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .

[13]  小竹 武 Geometry of the Laplace operator , 1981 .

[14]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[15]  G. Métivier Valeurs propres de problèmes aux limites elliptiques irréguliers , 1977 .

[16]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[17]  Eigenvalues of Elliptic Boundary Value Problems with an Indefinite Weight Function , 1986 .

[18]  M. Protter Can one hear the shape of a drum? revisited , 1987 .

[19]  R. Seeley,et al.  A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .

[20]  Dieter Gromes,et al.  Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .

[21]  A. E. Kolli nième épaisseur dans les espaces de Sobolev , 1974 .

[22]  H. Urakawa Bounded domains which are isospectral but not congruent , 1982 .

[23]  F. Gehring,et al.  Hausdorff Dimension and Quasiconformal Mappings , 1973 .

[24]  Claude Tricot,et al.  Dimensions des spirales , 1983 .

[25]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[26]  F. Almgren,et al.  Plateau's problem : an invitation to varifold geometry , 1968 .

[27]  René Carmona,et al.  Can one hear the dimension of a fractal? , 1986 .

[28]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[29]  G. Lorentz Approximation of Functions , 1966 .

[30]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[31]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[32]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[33]  G. Rota Les objects fractals: B. Mandelbrot, Flammation, 1975, 186 pp. , 1976 .

[34]  J. Kahane,et al.  Ensembles parfaits et séries trigonométriques , 1963 .

[35]  M. Lapidus The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus , 1987 .

[36]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[37]  B. Simon Functional integration and quantum physics , 1979 .

[38]  Michel L. Lapidus,et al.  Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien , 1988 .

[39]  V. Ivrii Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary , 1984 .

[40]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[41]  V. Guillemin,et al.  Some inverse spectral results for negatively curved 2-manifolds , 1980 .

[42]  M. Lapidus The Feynman-Kac formula with a Lebesgue-Stieltjes measure: An integral equation in the general case , 1989 .

[43]  Luciano Pietronero,et al.  FRACTALS IN PHYSICS , 1990 .

[44]  P. Grisvard Le comportement asymptotique des valeurs propres d'un opérateur , 1971 .

[45]  V. Gol'dshtein,et al.  Criteria for extension of functions of the class L21 from unbounded plane domains , 1979 .

[46]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  M. Lapidus Can One Hear the Shape of a Fractal Drum? Partial Resolution of the Weyl-Berry Conjecture , 1991 .

[48]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[49]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[50]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[51]  M. Lapidus The differential equation for the Feynman-Kac formula with a Lebesgue-Stieltjes measure , 1986 .

[52]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[53]  S. Yau Nonlinear Analysis In Geometry , 1986 .

[54]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[55]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[56]  M. Lapidus,et al.  Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus , 1986 .

[57]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[58]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[59]  R. Melrose Scattering theory and the trace of the wave group , 1982 .

[60]  P. Bérard Remarques sur la conjecture de Weyl , 1983 .

[61]  R. Seeley,et al.  AN ESTIMATE NEAR THE BOUNDARY FOR THE SPECTRAL FUNCTION OF THE LAPLACE OPERATOR , 1980 .

[62]  G. Choquet,et al.  Outils topologiques et métriques de l'analyse mathématique , 1969 .

[63]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .