Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture
暂无分享,去创建一个
[1] Eberhard R. Hilf,et al. Spectra of Finite Systems , 1980 .
[2] J. Fleckinger,et al. Remainder estimates for the asymptotics of elliptic eigenvalue problems with indefinite weights , 1987 .
[3] L. Hörmander,et al. The spectral function of an elliptic operator , 1968 .
[4] R. Courant. Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik , 1920 .
[5] John Hawkes,et al. Hausdorff Measure, Entropy, and the Independence of Small Sets , 1974 .
[6] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[7] J. Kahane,et al. Fractals : dimensions non entières et applications , 1987 .
[8] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[9] H. Weyl. Ueber die asymptotische Verteilung der Eigenwerte , 1911 .
[10] M. V. Berry,et al. Distribution of Modes in Fractal Resonators , 1979 .
[11] Richard B. Melrose,et al. Weyl''s conjecture for manifolds with concave boundary , 1980 .
[12] V. Ya. Ivrii,et al. Second term of the spectral asymptotic expansion of the Laplace - Beltrami operator on manifolds with boundary , 1980 .
[13] 小竹 武. Geometry of the Laplace operator , 1981 .
[14] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[15] G. Métivier. Valeurs propres de problèmes aux limites elliptiques irréguliers , 1977 .
[16] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.
[17] Eigenvalues of Elliptic Boundary Value Problems with an Indefinite Weight Function , 1986 .
[18] M. Protter. Can one hear the shape of a drum? revisited , 1987 .
[19] R. Seeley,et al. A sharp asymptotic remainder estimate for the eigenvalues of the Laplacian in a domain of R3 , 1978 .
[20] Dieter Gromes,et al. Über die asymptotische Verteilung der Eigenwerte des Laplace-Operators für Gebiete auf der Kugeloberfläche , 1966 .
[21] A. E. Kolli. nième épaisseur dans les espaces de Sobolev , 1974 .
[22] H. Urakawa. Bounded domains which are isospectral but not congruent , 1982 .
[23] F. Gehring,et al. Hausdorff Dimension and Quasiconformal Mappings , 1973 .
[24] Claude Tricot,et al. Dimensions des spirales , 1983 .
[25] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[26] F. Almgren,et al. Plateau's problem : an invitation to varifold geometry , 1968 .
[27] René Carmona,et al. Can one hear the dimension of a fractal? , 1986 .
[28] D'arcy W. Thompson,et al. On Growth and Form , 1917, Nature.
[29] G. Lorentz. Approximation of Functions , 1966 .
[30] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[31] R. Courant,et al. Methods of Mathematical Physics, Vol. I , 1954 .
[32] M. Birman,et al. PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .
[33] G. Rota. Les objects fractals: B. Mandelbrot, Flammation, 1975, 186 pp. , 1976 .
[34] J. Kahane,et al. Ensembles parfaits et séries trigonométriques , 1963 .
[35] M. Lapidus. The Feynman-Kac formula with a Lebesgue-Stieltjes measure and Feynman's operational calculus , 1987 .
[36] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[37] B. Simon. Functional integration and quantum physics , 1979 .
[38] Michel L. Lapidus,et al. Tambour fractal: vers une résolution de la conjecture de Weyl-Berry pour les valeurs propres du laplacien , 1988 .
[39] V. Ivrii. Precise Spectral Asymptotics for Elliptic Operators Acting in Fiberings over Manifolds with Boundary , 1984 .
[40] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[41] V. Guillemin,et al. Some inverse spectral results for negatively curved 2-manifolds , 1980 .
[42] M. Lapidus. The Feynman-Kac formula with a Lebesgue-Stieltjes measure: An integral equation in the general case , 1989 .
[43] Luciano Pietronero,et al. FRACTALS IN PHYSICS , 1990 .
[44] P. Grisvard. Le comportement asymptotique des valeurs propres d'un opérateur , 1971 .
[45] V. Gol'dshtein,et al. Criteria for extension of functions of the class L21 from unbounded plane domains , 1979 .
[46] C. Tricot. Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.
[47] M. Lapidus. Can One Hear the Shape of a Fractal Drum? Partial Resolution of the Weyl-Berry Conjecture , 1991 .
[48] Peter W. Jones. Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .
[49] H. Weinberger. Variational Methods for Eigenvalue Approximation , 1974 .
[50] Hideki Takayasu,et al. Fractals in the Physical Sciences , 1990 .
[51] M. Lapidus. The differential equation for the Feynman-Kac formula with a Lebesgue-Stieltjes measure , 1986 .
[52] S. Agmon. Lectures on Elliptic Boundary Value Problems , 1965 .
[53] S. Yau. Nonlinear Analysis In Geometry , 1986 .
[54] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[55] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[56] M. Lapidus,et al. Generalized Dyson series, generalized Feynman diagrams, the Feynman integral and Feynman’s operational calculus , 1986 .
[57] W. L. Cowley. The Uncertainty Principle , 1949, Nature.
[58] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[59] R. Melrose. Scattering theory and the trace of the wave group , 1982 .
[60] P. Bérard. Remarques sur la conjecture de Weyl , 1983 .
[61] R. Seeley,et al. AN ESTIMATE NEAR THE BOUNDARY FOR THE SPECTRAL FUNCTION OF THE LAPLACE OPERATOR , 1980 .
[62] G. Choquet,et al. Outils topologiques et métriques de l'analyse mathématique , 1969 .
[63] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .