Efficient Covariance Approximations for Large Sparse Precision Matrices

ABSTRACT The use of sparse precision (inverse covariance) matrices has become popular because they allow for efficient algorithms for joint inference in high-dimensional models. Many applications require the computation of certain elements of the covariance matrix, such as the marginal variances, which may be nontrivial to obtain when the dimension is large. This article introduces a fast Rao–Blackwellized Monte Carlo sampling-based method for efficiently approximating selected elements of the covariance matrix. The variance and confidence bounds of the approximations can be precisely estimated without additional computational costs. Furthermore, a method that iterates over subdomains is introduced, and is shown to additionally reduce the approximation errors to practically negligible levels in an application on functional magnetic resonance imaging data. Both methods have low memory requirements, which is typically the bottleneck for competing direct methods.

[1]  Dmitry M. Malioutov,et al.  Walk-Sums and Belief Propagation in Gaussian Graphical Models , 2006, J. Mach. Learn. Res..

[2]  Yousef Saad,et al.  A Probing Method for Computing the Diagonal of the Matrix Inverse ∗ , 2010 .

[3]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[4]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[5]  E Weinan,et al.  A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations , 2010, SIAM J. Sci. Comput..

[6]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[7]  Olaf Schenk,et al.  Fast Methods for Computing Selected Elements of the Green's Function in Massively Parallel Nanoelectronic Device Simulations , 2013, Euro-Par.

[8]  Aki Vehtari,et al.  Modelling local and global phenomena with sparse Gaussian processes , 2008, UAI.

[9]  T. Manteuffel An incomplete factorization technique for positive definite linear systems , 1980 .

[10]  Venkat Chandrasekaran,et al.  Feedback message passing for inference in gaussian graphical models , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[12]  David Bolin,et al.  Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields , 2009, Comput. Stat. Data Anal..

[13]  George Papandreou,et al.  Efficient variational inference in large-scale Bayesian compressed sensing , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[14]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[15]  François-Henry Rouet,et al.  Parallel Computation of Entries of A-1 , 2015, SIAM J. Sci. Comput..

[16]  W. F. Tinney,et al.  On computing certain elements of the inverse of a sparse matrix , 1975, Commun. ACM.

[17]  George Papandreou,et al.  Gaussian sampling by local perturbations , 2010, NIPS.

[18]  D. Nychka,et al.  Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis , 2007 .

[19]  Jo Eidsvik,et al.  Parameter estimation in high dimensional Gaussian distributions , 2011, Stat. Comput..

[20]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[21]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[22]  H. Rue,et al.  Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .

[23]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[24]  Jean-Yves L'Excellent,et al.  On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment , 2012, SIAM J. Sci. Comput..

[25]  F. Lindgren,et al.  Excursion and contour uncertainty regions for latent Gaussian models , 2012, 1211.3946.

[26]  Dmitry M. Malioutov,et al.  Low-Rank Variance Approximation in GMRF Models: Single and Multiscale Approaches , 2008, IEEE Transactions on Signal Processing.

[27]  พงศ์ศักดิ์ บินสมประสงค์,et al.  FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .

[28]  Lexing Ying,et al.  SelInv---An Algorithm for Selected Inversion of a Sparse Symmetric Matrix , 2011, TOMS.

[29]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[30]  Yousef Saad,et al.  Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature , 2017, SIAM J. Matrix Anal. Appl..

[31]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[32]  Eric Darve,et al.  Computing entries of the inverse of a sparse matrix using the FIND algorithm , 2008, J. Comput. Phys..

[33]  M. Hutchinson A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .

[34]  Jianlin Xia,et al.  Fast Sparse Selected Inversion , 2015, SIAM J. Matrix Anal. Appl..

[35]  David Bolin,et al.  Fast Bayesian whole-brain fMRI analysis with spatial 3D priors , 2016, NeuroImage.

[36]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[37]  Y. Saad,et al.  An estimator for the diagonal of a matrix , 2007 .

[38]  B. Mallick,et al.  Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. , 2015, Biometrika.

[39]  Robert J. Scherrer,et al.  Topology of large-scale structure in seeded hot dark matter models , 1992 .

[40]  Guillaume Flandin,et al.  Bayesian comparison of spatially regularised general linear models , 2007, Human brain mapping.

[41]  G. Koop Forecasting with Medium and Large Bayesian VARs , 2013 .

[42]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[43]  Mathias Jacquelin,et al.  PSelInv—A Distributed Memory Parallel Algorithm for Selected Inversion , 2017, ACM Trans. Math. Softw..

[44]  Joseph W. H. Liu The Minimum Degree Ordering with Constraints , 1989 .

[45]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[46]  François-Henry Rouet,et al.  Memory and performance issues in parallel multifrontal factorizations and triangular solutions with sparse right-hand sides. (Problèmes de mémoire et de performance de la factorisation multifrontale parallèle et de la résolution triangulaire à seconds membres creux) , 2012 .