Expected Time Analysis of Algorithms in Computational Geometry

We give a brief inexhaustive survey of recent results that can be helpful in the expected time analysis of algorithms in computational geometry. Most fast average time algorithms use one of three principles: bucketing, divide-and-conquer (merging), or quick elimination (throw-away). To illustrate the different points, the convex hull problem is taken as our prototype problem. We also discuss searching, sorting, finding the Voronoi diagram and the minimal spanning tree, identifying the set of maximal vectors, and determining the diameter of a set and the minimum covering sphere.

[1]  Robert Sedgewick,et al.  Implementing Quicksort programs , 1978, CACM.

[2]  Donald W. Hearn,et al.  The minimum sphere covering a convex polyhedron , 1974 .

[3]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[4]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[5]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[6]  Luc Devroye,et al.  On the average complexity of some bucketing algorithms , 1981 .

[7]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[8]  William F. Eddy,et al.  A New Convex Hull Algorithm for Planar Sets , 1977, TOMS.

[9]  Selim G. Akl,et al.  A Fast Convex Hull Algorithm , 1978, Inf. Process. Lett..

[10]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[11]  Michael Ian Shamos,et al.  Divide and Conquer for Linear Expected Time , 1978, Inf. Process. Lett..

[12]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[13]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[14]  D. Hearn,et al.  The Minimum Covering Sphere Problem , 1972 .

[15]  A. Rényi,et al.  ZufÄllige konvexe Polygone in einem Ringgebiet , 1968 .

[16]  Robert E. Tarjan,et al.  Application of a Planar Separator Theorem , 1977, FOCS.

[17]  B. Weide Statistical methods in algorithm design and analysis. , 1978 .

[18]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[19]  Luc Devroye,et al.  How to reduce the average complexity of convex hull finding algorithms , 1981 .

[20]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[21]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[22]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[23]  O. Barndorfi-nielsen,et al.  On the distribution of the number of admissible points in a vector , 1966 .

[24]  Luc Devroye A Note on Finding Convex Hulls Via Maximal Vectors , 1980, Inf. Process. Lett..

[25]  F. Preparata Steps into Computational Geometry , 1977 .

[26]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[27]  B. Bhattacharya Application of computational geometry to pattern recognition problems , 1982 .

[28]  H. Carnal Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .