Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state

Abstract Nanocelluloses are natural materials with at least one dimension in the nano-scale. They combine important cellulose properties with the features of nanomaterials and open new horizons for materials science and its applications. The field of nanocellulose materials is subdivided into three domains: biotechnologically produced bacterial nanocellulose hydrogels, mechanically delaminated cellulose nanofibers, and hydrolytically extracted cellulose nanocrystals. This review article describes today’s state regarding the production, structural details, physicochemical properties, and innovative applications of these nanocelluloses. Promising technical applications including gels/foams, thickeners/stabilizers as well as reinforcing agents have been proposed and research from last five years indicates new potential for groundbreaking innovations in the areas of cosmetic products, wound dressings, drug carriers, medical implants, tissue engineering, food and composites. The current state of worldwide commercialization and the challenge of reducing nanocellulose production costs are also discussed.

[1]  H. Yano,et al.  Development of continuous process enabling nanofibrillation of pulp and melt compounding , 2013, Cellulose.

[2]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[3]  Seong-Jun Kim,et al.  Properties of bacterial cellulose produced in a pilot-scale spherical type bubble column bioreactor , 2009 .

[4]  T. Pradeep,et al.  Diffusion-Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster–Cellulose Nanocrystal Composites , 2016 .

[5]  K. Cheng,et al.  Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis , 2009, Journal of biological engineering.

[6]  Stefan Pelzer Maßgeschneiderte Mikroorganismen: Mikrobielle Forschung - eine Säule der Bioökonomie , 2012 .

[7]  Honglai Liu,et al.  Chemistry and Applications of Nanocrystalline Cellulose and its Derivatives: a Nanotechnology Perspective , 2011 .

[8]  Chaoliang He,et al.  Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (L-glutamic acid)-based microgels for oral insulin controlled release. , 2012, Carbohydrate polymers.

[9]  Timo Laaksonen,et al.  Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[10]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[11]  A. Naderi,et al.  Carboxymethylated nanofibrillated cellulose: rheological studies , 2014, Cellulose.

[12]  A. Terpou,et al.  Progress in bacterial cellulose matrices for biotechnological applications. , 2016, Bioresource technology.

[13]  F. Müller,et al.  Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine , 2015, Journal of Materials Science: Materials in Medicine.

[14]  Paul Gatenholm,et al.  Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. , 2015, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  A. Tejado,et al.  Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers , 2012, Cellulose.

[16]  T. Pereira,et al.  Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. , 2014, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  S. B. Lindström,et al.  Colloidal stability of aqueous nanofibrillated cellulose dispersions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[18]  Chris Somerville,et al.  Cellulose synthesis in higher plants. , 2006, Annual review of cell and developmental biology.

[19]  Xuezhu Xu,et al.  Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. , 2013, ACS applied materials & interfaces.

[20]  Yan Huang,et al.  Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. , 2017, Materials science & engineering. C, Materials for biological applications.

[21]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[22]  I. Kontro,et al.  Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials , 2016, Cellulose.

[23]  K. Oksman,et al.  Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture , 2016 .

[24]  S. Eichhorn,et al.  Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. , 2012, Biomacromolecules.

[25]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[26]  A. Rahmat,et al.  Review of Nanocellulose Polymer Composite Characteristics and Challenges , 2017 .

[27]  A. R. Santos,et al.  Increased response of Vero cells to PHBV matrices treated by plasma , 2008, Journal of materials science. Materials in medicine.

[28]  Yudong Zheng,et al.  Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte , 2017 .

[29]  H. Bizot,et al.  Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions , 2013 .

[30]  K. Oksman,et al.  Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties , 2016 .

[31]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[32]  Ryota Kose,et al.  "Nanocellulose" as a single nanofiber prepared from pellicle secreted by Gluconacetobacter xylinus using aqueous counter collision. , 2011, Biomacromolecules.

[33]  C. Rosen,et al.  Results of the Prospective, Randomized, Multicenter Clinical Trial Evaluating a Biosynthesized Cellulose Graft for Repair of Dural Defects , 2011, Neurosurgery.

[34]  Ayesha Khalid,et al.  Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. , 2017, Carbohydrate polymers.

[35]  Hiroyuki Yano,et al.  Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers , 2005 .

[36]  Sukho Park,et al.  Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network , 2016 .

[37]  Petra Mela,et al.  A Novel Small-Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and Preliminary In Vivo Testing. , 2016, Macromolecular bioscience.

[38]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[39]  P. Pontes,et al.  Bacterial cellulose as laryngeal medialization material: an experimental study. , 2011, Journal of voice : official journal of the Voice Foundation.

[40]  Xuan Yang,et al.  Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials , 2015, Advanced materials.

[41]  T. Lindstroem Chemical factors affecting the behaviour of fibres during papermaking , 1992 .

[42]  E. Cranston,et al.  Tailoring Cellulose Nanocrystal and Surfactant Behavior in Miniemulsion Polymerization , 2017 .

[43]  Bernard Cathala,et al.  Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. , 2013, Biomacromolecules.

[44]  T. Lindström,et al.  On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials , 1987 .

[45]  J. Bras,et al.  Production of cellulose nanofibrils: A review of recent advances , 2016 .

[46]  Armando J D Silvestre,et al.  Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. , 2012, International journal of pharmaceutics.

[47]  Zhi‐Kang Xu,et al.  Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance , 2017 .

[48]  B. S. Noremberg,et al.  Advances in Nanostructured Cellulose-based Biomaterials , 2017 .

[49]  Hui-li Shao,et al.  Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. , 2017, Journal of materials chemistry. B.

[50]  Ahu Gumrah Dumanli,et al.  Nanocellulose and its Composites for Biomedical Applications. , 2017, Current medicinal chemistry.

[51]  S. Ribeiro,et al.  A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. , 2016, Carbohydrate polymers.

[52]  K. Tam,et al.  Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications , 2013, Cellulose.

[53]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[54]  A. Naderi,et al.  Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? , 2015, Cellulose.

[55]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[56]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[57]  Andrew G. Glen,et al.  APPL , 2001 .

[58]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .

[59]  Paul Gatenholm,et al.  Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes , 2007, Biotechnology and bioengineering.

[60]  S. Shojaosadati,et al.  Starch- and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices , 2017 .

[61]  Paul Gatenholm,et al.  Bacterial Nanocellulose as a Renewable Material for Biomedical Applications , 2010 .

[62]  P. Chang,et al.  Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on Cyclodextrin inclusion , 2010 .

[63]  G. Maret,et al.  Negative Diamagnetic Anisotropy and Birefringence of Cellulose Nanocrystals , 2015 .

[64]  Yanyun Zhao,et al.  Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). , 2017, Food chemistry.

[65]  D. Gray,et al.  Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy , 2015, Materials.

[66]  M. Wada,et al.  Nanoporous cellulose as metal nanoparticles support. , 2009, Biomacromolecules.

[67]  Shiwen Chen,et al.  Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits , 2014, International journal of molecular sciences.

[68]  A. Dufresne Cellulose nanomaterial reinforced polymer nanocomposites , 2017 .

[69]  Brian O'Connor,et al.  An ecotoxicological characterization of nanocrystalline cellulose (NCC) , 2010, Nanotoxicology.

[70]  T. Kondo,et al.  Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid) , 2013 .

[71]  Hyoung-Joon Jin,et al.  Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. , 2006, Biomacromolecules.

[72]  C. Freire,et al.  Poly(N-methacryloyl glycine)/nanocellulose composites as pH-sensitive systems for controlled release of diclofenac. , 2017, Carbohydrate polymers.

[73]  A. French,et al.  Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index , 2013, Cellulose.

[74]  R. Kumar,et al.  Grafted cellulose: a bio-based polymer for durable applications , 2018, Polymer Bulletin.

[75]  K. Oksman,et al.  Orientation of cellulose nanowhiskers in polyvinyl alcohol , 2007 .

[76]  Paul Gatenholm,et al.  Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts , 2011, Journal of tissue engineering and regenerative medicine.

[77]  J. Hirvonen,et al.  Nanofibrillar cellulose films for controlled drug delivery. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[78]  Xiao–kun Ouyang,et al.  Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution. , 2016, International journal of biological macromolecules.

[79]  L. Bergström,et al.  Nanocellulose-Based Materials for Water Purification , 2017, Nanomaterials.

[80]  H. Bizot,et al.  Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface. , 2012, Biomacromolecules.

[81]  S. Lima,et al.  Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: a randomized and controlled trial. , 2017, Revista do Colegio Brasileiro de Cirurgioes.

[82]  Shuwen Hu,et al.  “Smart” Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications , 2013, Materials.

[83]  V. Thakur,et al.  Recent advances in cellulose and chitosan based membranes for water purification: A concise review. , 2016, Carbohydrate polymers.

[84]  Morsyleide de Freitas Rosa,et al.  Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior , 2010 .

[85]  Thorsten Wahlers,et al.  Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes , 2009 .

[86]  Yang Liu,et al.  Flocculation of bacteria by depletion interactions due to rod-shaped cellulose nanocrystals , 2012 .

[87]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[88]  Yu Zhu,et al.  Azobenzene-functionalized polymers by ring-opening metathesis polymerization for high dielectric and energy storage performance , 2019, Polymer Chemistry.

[89]  Nicolas Drogat,et al.  Chlorin-PEI-labeled cellulose nanocrystals: synthesis, characterization and potential application in PDT. , 2012, Bioorganic & medicinal chemistry letters.

[90]  Y. Liu,et al.  Understanding the toxicity of carbon nanotubes. , 2013, Accounts of chemical research.

[91]  M. Amin,et al.  Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems , 2016 .

[92]  Wei Shao,et al.  Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. , 2016, Carbohydrate polymers.

[93]  Changlai Zhu,et al.  Esophageal replacement by hydroxylated bacterial cellulose patch in a rabbit model. , 2015, Turkish journal of medical sciences.

[94]  Guang Yang,et al.  Construction of Small‐Diameter Vascular Graft by Shape‐Memory and Self‐Rolling Bacterial Cellulose Membrane , 2017, Advanced healthcare materials.

[95]  Minoru Fujita,et al.  Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan , 1998 .

[96]  M. Uo,et al.  Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. , 2013, Acta biomaterialia.

[97]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[98]  D. Volkmer,et al.  Carbon supported Ru clusters prepared by pyrolysis of Ru precursor-impregnated biopolymer fibers , 2015 .

[99]  Michael E Himmel,et al.  Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance , 2010, Biotechnology for biofuels.

[100]  C. Busuioc,et al.  Fabrication of 3D calcium phosphates based scaffolds using bacterial cellulose as template , 2016 .

[101]  Jukka Seppälä,et al.  Synthesis of cellulose nanocrystals carrying tyrosine sulfate mimetic ligands and inhibition of alphavirus infection. , 2014, Biomacromolecules.

[102]  D. Klemm,et al.  Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model. , 2015, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[103]  Todd Hoare,et al.  Review of Hydrogels and Aerogels Containing Nanocellulose , 2017 .

[104]  M. A. Alam,et al.  Stress Transfer Quantification in Gelatin-Matrix Natural Composites with Tunable Optical Properties. , 2015, Biomacromolecules.

[105]  Daisuke Tatsumi,et al.  Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions , 2002 .

[106]  G. R. Castro,et al.  Self-assembly of carrageenin–CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery , 2015 .

[107]  A. Dufresne,et al.  Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk , 2012 .

[108]  Fumitaka Horii,et al.  CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures , 1993 .

[109]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[110]  K. Tam,et al.  Synthesis of β-Cyclodextrin-Modified Cellulose Nanocrystals (CNCs)@Fe3O4@SiO2 Superparamagnetic Nanorods , 2014 .

[111]  Julien Bras,et al.  Use of nanocellulose in printed electronics: a review. , 2016, Nanoscale.

[112]  D. Ding,et al.  Synthesis of hydroxypropylcellulose-poly(acrylic acid) particles with semi-interpenetrating polymer network structure. , 2008, Biomacromolecules.

[113]  Eric Dickinson,et al.  Use of nanoparticles and microparticles in the formation and stabilization of food emulsions , 2012 .

[114]  Hongyang Ma,et al.  Highly Permeable Polymer Membranes Containing Directed Channels for Water Purification. , 2012, ACS macro letters.

[115]  Julien Bras,et al.  Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications , 2010 .

[116]  Azade Taheri,et al.  The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone , 2015, Chemical biology & drug design.

[117]  S. Rowan,et al.  Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. , 2017, Carbohydrate polymers.

[118]  Chem. , 2020, Catalysis from A to Z.

[119]  M. Penttilä,et al.  Elastic and pH-Responsive Hybrid Interfaces Created with Engineered Resilin and Nanocellulose. , 2017, Biomacromolecules.

[120]  S. Eichhorn,et al.  Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. , 2013, Acta biomaterialia.

[121]  Juha Salmela,et al.  The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography , 2014, Cellulose.

[122]  E. Cranston,et al.  Directed Assembly of Oriented Cellulose Nanocrystal Films , 2014 .

[123]  J. Putaux,et al.  Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers , 2012, Cellulose.

[124]  D. Gray Nanocellulose: From Nature to High Performance Tailored Material , 2013 .

[125]  Per Tomas Larsson,et al.  A CP/MAS13C NMR investigation of molecular ordering in celluloses , 1997 .

[126]  E. J. Foster,et al.  Elucidating the Potential Biological Impact of Cellulose Nanocrystals , 2016 .

[127]  H. Shibai,et al.  A new bacterial cellulose substrate for mammalian cell culture , 2004, Cytotechnology.

[128]  Frank A. Müller,et al.  Bacterial nanocellulose with a shape-memory effect as potential drug delivery system , 2014 .

[129]  E. J. Foster,et al.  Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. , 2015, Biomacromolecules.

[130]  Dieter Klemm,et al.  Bacterial synthesized cellulose — artificial blood vessels for microsurgery , 2001 .

[131]  Junying Chen,et al.  Plasma-surface modification of biomaterials , 2002 .

[132]  R. Malcolm Brown,et al.  Cellulose structure and biosynthesis: What is in store for the 21st century? , 2004 .

[133]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[134]  G. Chinga-Carrasco,et al.  Temperature stability of nanocellulose dispersions. , 2017, Carbohydrate polymers.

[135]  Dieter Klemm,et al.  In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? , 2014, The Journal of surgical research.

[136]  R. Soares,et al.  Studies on the hemocompatibility of bacterial cellulose. , 2011, Journal of Biomedical Materials Research. Part A.

[137]  Colloid , 2020, Definitions.

[138]  Sang Hyun Lee,et al.  Alginate/bacterial cellulose nanocomposite beads prepared using Gluconacetobacter xylinus and their application in lipase immobilization. , 2017, Carbohydrate polymers.

[139]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[140]  Dana Kralisch,et al.  - Large-Scale Production of BNC: State and Challenges , 2016 .

[141]  L. Daniel Söderberg,et al.  Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments , 2014, Nature Communications.

[142]  J. Seppälä,et al.  Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. , 2014, Carbohydrate polymers.

[143]  F. Pignon,et al.  Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. , 2014, Carbohydrate polymers.

[144]  Lina Zhang,et al.  Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery , 2010 .

[145]  K. Tam,et al.  Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions , 2015, Cellulose.

[146]  Jean Paul Allain,et al.  Bacterial Nanocellulose Magnetically Functionalized for Neuro-Endovascular Treatment. , 2017, Macromolecular bioscience.

[147]  Angela Faustino Jozala,et al.  Bacterial nanocellulose production and application: a 10-year overview , 2015, Applied Microbiology and Biotechnology.

[148]  K. Tajima,et al.  Structural and mechanical characterization of bacterial cellulose-polyethylene glycol diacrylate composite gels. , 2017, Carbohydrate polymers.

[149]  John H T Luong,et al.  Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. , 2012, Trends in biotechnology.

[150]  S. Veldhuis,et al.  Comparison of nanocrystalline cellulose and fumed silica in latex coatings , 2014 .

[151]  Youssef Habibi,et al.  Key advances in the chemical modification of nanocelluloses. , 2014, Chemical Society reviews.

[152]  Amir Sani,et al.  Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods , 2009 .

[153]  Hong Dong,et al.  Cation-induced hydrogels of cellulose nanofibrils with tunable moduli. , 2013, Biomacromolecules.

[154]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[155]  J. Vincent,et al.  Survival of the cheapest , 2002 .

[156]  Jaakko V. I. Timonen,et al.  Multifunctional High‐Performance Biofibers Based on Wet‐Extrusion of Renewable Native Cellulose Nanofibrils , 2011, Advanced materials.

[157]  Steven D. Lacey,et al.  Nanocellulose as green dispersant for two-dimensional energy materials , 2015 .

[158]  S. Eichhorn,et al.  Stress transfer in cellulose nanowhisker composites--influence of whisker aspect ratio and surface charge. , 2011, Biomacromolecules.

[159]  Kunio Tsuboi,et al.  Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method , 2014 .

[160]  Guang Yang,et al.  Nano-cellulose 3D-networks as controlled-release drug carriers. , 2013, Journal of materials chemistry. B.

[161]  Feng F. Hong,et al.  Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels , 2017 .

[162]  Yanyun Zhao,et al.  Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. , 2017, Carbohydrate polymers.

[163]  M. Motoki,et al.  Bacterial cellulose III. Development of a new form of cellulose , 1993 .

[164]  T. Kondo,et al.  Changing cellulose crystalline structure in forming wood cell walls , 1996 .

[165]  R. Venditti,et al.  Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. , 2012, Journal of colloid and interface science.

[166]  Hiroyuki Yamamoto,et al.  In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation , 1996 .

[167]  Qingsong Zhang,et al.  Using in situ nanocellulose‐coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels , 2016, Biotechnology progress.

[168]  P. K. Kulkarni,et al.  Evaluation of Bacterial Cellulose Produced Form Acetobacter xylinum as Pharmaceutical Excipient , 2012 .

[169]  T. Lindstrom Chemical factors affecting the behaviour of fibres - during papermaking , 1992 .

[170]  Qianqian Wang,et al.  Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis , 2015, Cellulose.

[171]  M. MacLachlan,et al.  Functional materials from cellulose-derived liquid-crystal templates. , 2015, Angewandte Chemie.

[172]  Dimos Poulikakos,et al.  Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). , 2015, ACS nano.

[173]  A. W. Carpenter,et al.  Cellulose nanomaterials in water treatment technologies. , 2015, Environmental science & technology.

[174]  D. Fischer,et al.  Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system , 2017, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[175]  S. Hatzikiriakos,et al.  Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions , 2014, Cellulose.

[176]  A. Dufresne,et al.  Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. , 2013, Biomacromolecules.

[177]  Zheng Jia,et al.  Anomalous scaling law of strength and toughness of cellulose nanopaper , 2015, Proceedings of the National Academy of Sciences.

[178]  E. Lasseuguette,et al.  Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp , 2008 .

[179]  Shiping Zhu,et al.  Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal–Organic‐Framework Particles for Separations Applications , 2016, Advanced materials.

[180]  J. Luong,et al.  Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. , 2010, ACS applied materials & interfaces.

[181]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .

[182]  P. Echlin Handbook of Sample Preparation for Scanning Electron Microscopy and X-Ray Microanalysis , 2009 .

[183]  S. Manneville,et al.  Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. , 2015, Soft matter.

[184]  Paul Gatenholm,et al.  Bacterial nanocellulose : a sophisticated multifunctional material , 2013 .

[185]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[186]  Alain Dufresne,et al.  Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. , 2012, Nanoscale.

[187]  Shinian Liu,et al.  Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. , 2017, Materials science & engineering. C, Materials for biological applications.

[188]  Michael Y. Galperin,et al.  Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. , 2015, Trends in microbiology.

[189]  곤도 데쯔오,et al.  Wet pulverizing of polysaccharides , 2005 .

[190]  M. Frigione,et al.  Photocurable resin/nanocellulose composite coatings for wood protection , 2017 .

[191]  A. Atala,et al.  Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. , 2010, Biomaterials.

[192]  T. Lindström,et al.  On the nature of joint strength of paper − Effect of dry strength agents – Revisiting the Page equation , 2016 .

[193]  Carmen S. R. Freire,et al.  Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. , 2014, Carbohydrate polymers.

[194]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[195]  I. Shcherbakov,et al.  Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS , 2015 .

[196]  R. Pelton,et al.  Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose. , 2016, Biomacromolecules.

[197]  Yong Zhu,et al.  Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system , 2017 .

[198]  Y. Wan,et al.  Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors , 2018 .

[199]  M. Damar,et al.  A new graft material for myringoplasty: bacterial cellulose , 2016, European Archives of Oto-Rhino-Laryngology.

[200]  Le Hoang Sinh,et al.  Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics , 2017 .

[201]  Rainer Erdmann,et al.  White biotechnology for cellulose manufacturing—The HoLiR concept , 2009, Biotechnology and bioengineering.

[202]  L. Wågberg,et al.  Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. , 2015, Biomacromolecules.

[203]  A. Isogai,et al.  Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions , 2016 .

[204]  K. Lim,et al.  Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation , 2013, Advanced healthcare materials.

[205]  P. Gañán,et al.  Vegetable nanocellulose in food science: A review , 2016 .

[206]  K. Tam,et al.  Recent advances in the application of cellulose nanocrystals , 2017 .

[207]  J. Sirviö,et al.  Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. , 2012, Biomacromolecules.

[208]  Miguel Gama,et al.  Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells , 2010 .

[209]  T. Iwata,et al.  Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils , 2010 .

[210]  J. Ran,et al.  Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase , 2018, Journal of biomaterials science. Polymer edition.

[211]  Kang Li,et al.  Cellulose nanopapers as tight aqueous ultra-filtration membranes , 2015 .

[212]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[213]  T. Iwata,et al.  Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. , 2011, Biomacromolecules.

[214]  J. Hyun,et al.  Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation. , 2017, Carbohydrate polymers.

[215]  Kevin E. Shopsowitz,et al.  Free-standing mesoporous silica films with tunable chiral nematic structures , 2010, Nature.

[216]  Xuan Yang,et al.  Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties , 2014 .

[217]  J. Sirviö,et al.  Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment , 2013, Cellulose.

[218]  R. Pelton,et al.  Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions. , 2016, ACS macro letters.

[219]  P. Lu,et al.  Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes , 2009, Nanotechnology.

[220]  D. Fischer,et al.  Comprehensive analysis of the in vitro and ex ovo hemocompatibility of surface engineered iron oxide nanoparticles for biomedical applications , 2017, Archives of Toxicology.

[221]  L. Nyholm,et al.  Cellulose‐based Supercapacitors: Material and Performance Considerations , 2017 .

[222]  J. Asselin,et al.  Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. , 2014, ACS applied materials & interfaces.

[223]  Thomas Heinze,et al.  Comprehensive cellulose chemistry , 1998 .

[224]  C. Weder,et al.  A Simple and Versatile Strategy To Improve the Mechanical Properties of Polymer Nanocomposites with Cellulose Nanocrystals , 2017 .

[225]  Daniel J. Klingenberg,et al.  Friction between cellulose surfaces measured with colloidal probe microscopy , 2001 .

[226]  Sajad Pirsa,et al.  Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract. , 2017, Carbohydrate polymers.

[227]  Hamidreza Ghandehari,et al.  Cellular uptake and cytotoxicity of silica nanotubes. , 2008, Nano letters.

[228]  Lina Zhang,et al.  Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels. , 2016, Biomacromolecules.

[229]  K. Wolski,et al.  Grafting of thermosensitive poly(N-isopropylacrylamide) from wet bacterial cellulose sheets to improve its swelling-drying ability , 2016, Cellulose.

[230]  Junyong Zhu,et al.  Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs) , 2014 .

[231]  Xiaodong Cao,et al.  Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[232]  F. Cousin,et al.  Influence of charge density and ionic strength on the aggregation process of cellulose nanocrystals in aqueous suspension, as revealed by small-angle neutron scattering. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[233]  Wei Liu,et al.  Nanocellulose-based conductive materials and their emerging applications in energy devices - A review , 2017 .

[234]  Robert J. Moon,et al.  The influence of cellulose nanocrystal additions on the performance of cement paste , 2015 .

[235]  Janne Laine,et al.  Modification of cellulose nanofibrils with luminescent carbon dots. , 2014, Biomacromolecules.

[236]  Fredrik Lundell,et al.  Ultrastrong and Bioactive Nanostructured Bio-Based Composites. , 2017, ACS nano.

[237]  A. Walther,et al.  Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. , 2016, Biomacromolecules.

[238]  T. Kondo,et al.  Switching Surface Properties of Substrates by Coating with a Cellulose Nanofiber Having a High Adsorbability , 2011 .

[239]  Chuncheng Chen,et al.  Br−/BrO−-mediated highly efficient photoelectrochemical epoxidation of alkenes on α-Fe2O3 , 2023, Nature Communications.

[240]  Hafiz M.N. Iqbal,et al.  Bacterial Cellulose: A Sustainable Source to Develop Value-Added Products – A Review , 2016 .

[241]  Jian Li,et al.  Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds , 2009 .

[242]  P. Gatenholm,et al.  Small calibre biosynthetic bacterial cellulose blood vessels: 13-months patency in a sheep model , 2012, Scandinavian cardiovascular journal : SCJ.

[243]  S. Premjet,et al.  The Effect of Ingredients of Sugar Cane Molasses on Bacterial Cellulose Production by Acetobacter xylinum ATCC 10245 , 2007 .

[244]  M. Skrifvars,et al.  Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals , 2016 .

[245]  Bruno Frka-Petesic,et al.  First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals , 2014 .

[246]  T. Lindström Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties , 2017 .

[247]  D. Fischer,et al.  Bacterial nanocellulose: the future of controlled drug delivery? , 2017, Therapeutic delivery.

[248]  N. Stark Opportunities for cellulose nanomaterials in packaging films: a review and future trends , 2016 .

[249]  M. Kostoglou,et al.  Decolorization of Dyeing Wastewater Using Polymeric Absorbents - An Overview , 2013 .

[250]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[251]  J. Kwon,et al.  Functional biopolymers produced by biochemical technology considering applications in food engineering , 2007 .

[252]  Tetsuo Kondo,et al.  Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains , 2005 .

[253]  L. Benyahia,et al.  Stabilization of Water-in-Water Emulsions by Nanorods. , 2016, ACS macro letters.

[254]  A. Walther,et al.  Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils. , 2013, Biomacromolecules.

[255]  Leila Jowkarderis,et al.  Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils , 2014, Cellulose.

[256]  D. Hutmacher,et al.  Scaffolds in tissue engineering bone and cartilage. , 2000, Biomaterials.

[257]  P. Gatenholm,et al.  In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. , 2017, Materials science & engineering. C, Materials for biological applications.

[258]  Yanyun Zhao,et al.  Cellulose Nanocrystal Reinforced Chitosan Coatings for Improving the Storability of Postharvest Pears Under Both Ambient and Cold Storages. , 2017, Journal of food science.

[259]  K. Letchford,et al.  The use of nanocrystalline cellulose for the binding and controlled release of drugs , 2011, International journal of nanomedicine.

[260]  J. Sirviö,et al.  High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films , 2015, Cellulose.

[261]  Herbert Sixta,et al.  Handbook of Pulp , 2006 .

[262]  H. Yano,et al.  Nanofibrillation of pulp fibers by twin-screw extrusion , 2015, Cellulose.

[263]  T. Dobre,et al.  Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. , 2014, International journal of biological macromolecules.

[264]  L. Abdullah,et al.  Review of Bionanocomposite Coating Films and Their Applications , 2016, Polymers.

[265]  A. Magnin,et al.  High Solid Content Production of Nanofibrillar Cellulose via Continuous Extrusion , 2017 .

[266]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[267]  Qipeng Yuan,et al.  Preparation and stabilization of D-limonene Pickering emulsions by cellulose nanocrystals. , 2014, Carbohydrate polymers.

[268]  Paul Gatenholm,et al.  In vivo biocompatibility of bacterial cellulose. , 2006, Journal of biomedical materials research. Part A.

[269]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[270]  E. Cranston,et al.  Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. , 2013, Biomacromolecules.

[271]  O. Rojas,et al.  Thermomechanical properties of lignin-based electrospun nanofibers and films reinforced with cellulose nanocrystals: a dynamic mechanical and nanoindentation study. , 2013, ACS applied materials & interfaces.

[272]  S. Farris,et al.  Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. , 2013, Colloids and surfaces. B, Biointerfaces.

[273]  Chao Huang,et al.  Study on non-isothermal crystallization behavior of isotactic polypropylene/bacterial cellulose composites , 2017 .

[274]  Andrea Zille,et al.  Laccase immobilization on bacterial nanocellulose membranes: Antimicrobial, kinetic and stability properties. , 2016, Carbohydrate polymers.

[275]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[276]  Shuping Dong,et al.  Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study , 2016 .

[277]  R. Reiner,et al.  Probing crystallinity of never-dried wood cellulose with Raman spectroscopy , 2016, Cellulose.

[278]  Raimund Jaeger,et al.  Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. , 2014, Acta biomaterialia.

[279]  Chao Huang,et al.  Preparation of Esterified Bacterial Cellulose for Improved Mechanical Properties and the Microstructure of Isotactic Polypropylene/Bacterial Cellulose Composites , 2016, Polymers.

[280]  A. Mäkitie,et al.  Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems , 2017, PloS one.

[281]  J. Seppälä,et al.  Manipulation of cellulose nanocrystal surface sulfate groups toward biomimetic nanostructures in aqueous media. , 2015, Carbohydrate polymers.

[282]  Janne Laine,et al.  The behaviour of cationic NanoFibrillar Cellulose in aqueous media , 2011 .

[283]  R. Atalla,et al.  Native Cellulose: A Composite of Two Distinct Crystalline Forms , 1984, Science.

[284]  E. Cranston,et al.  Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[285]  A. Naderi Nanofibrillated cellulose: properties reinvestigated , 2017, Cellulose.

[286]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[287]  K. Yager,et al.  Cooperative Ordering and Kinetics of Cellulose Nanocrystal Alignment in a Magnetic Field. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[288]  C. Rawn,et al.  A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration , 2009 .

[289]  Feng F. Hong,et al.  Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis , 2015, BioMed research international.

[290]  Lujie Song,et al.  Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model , 2015, Biomedical materials.

[291]  T. Kondo,et al.  Preparation and characterization of two types of separate collagen nanofibers with different widths using aqueous counter collision as a gentle top-down process , 2014 .

[292]  Meng Li,et al.  Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. , 2015, Journal of bioscience and bioengineering.

[293]  Jaehwan Kim,et al.  Review of nanocellulose for sustainable future materials , 2015, International Journal of Precision Engineering and Manufacturing-Green Technology.

[294]  A. Naderi,et al.  A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step , 2016 .

[295]  A. Romano,et al.  Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions , 2012, Cellulose.

[296]  Bai Yang,et al.  Colloidal cholesteric liquid crystal in spherical confinement , 2016, Nature Communications.

[297]  A. W. Carpenter,et al.  Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation. , 2017, Environmental science. Nano.

[298]  Alain Dufresne,et al.  Nanocellulose in biomedicine: Current status and future prospect , 2014 .

[299]  Frederico de Melo Tavares de Lima,et al.  Biocompatible bacterial cellulose membrane in dural defect repair of rat , 2017, Journal of Materials Science: Materials in Medicine.

[300]  H. Bizot,et al.  New Pickering emulsions stabilized by bacterial cellulose nanocrystals. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[301]  A. Naderi,et al.  Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties , 2015, Cellulose.

[302]  S. P. Rowland,et al.  The nature of accessible surfaces in the microstructure of cotton cellulose , 1972 .

[303]  Sarah E. Ballinger,et al.  Surfactant-enhanced cellulose nanocrystal Pickering emulsions. , 2015, Journal of colloid and interface science.

[304]  A. Dufresne,et al.  Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review , 2015, Cellulose.

[305]  Juha Salmela,et al.  Flocculation of microfibrillated cellulose in shear flow , 2012, Cellulose.

[306]  H. Sehaqui,et al.  Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix , 2011 .

[307]  S. Strand,et al.  Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—Premises for use of CNC in enhanced oil recovery , 2016 .

[308]  F. Fu,et al.  Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating , 2017 .

[309]  Ma. Eden S. Piadozo,et al.  Nata de Coco Industry in the Philippines , 2016 .

[310]  M. MacLachlan,et al.  Structure and transformation of tactoids in cellulose nanocrystal suspensions , 2016, Nature Communications.

[311]  Chengjun Zhou,et al.  Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. , 2011, Biomacromolecules.

[312]  T. Lindström,et al.  The influence of colloidal interactions on fiber network strength. , 2007, Journal of colloid and interface science.

[313]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[314]  E. Johan Foster,et al.  Recent advances in nanocellulose for biomedical applications , 2015 .

[315]  M. Roman Toxicity of Cellulose Nanocrystals: A Review , 2015 .

[316]  T. Kondo,et al.  Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. , 2014, Carbohydrate polymers.

[317]  H. Kosmehl,et al.  Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. , 2009, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[318]  W. Thielemans,et al.  CO₂ controlled flocculation of microalgae using pH responsive cellulose nanocrystals. , 2015, Nanoscale.

[319]  Dana Kralisch,et al.  The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. , 2013, Journal of pharmaceutical sciences.

[320]  Xuan Yang,et al.  Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals , 2017, Cellulose.

[321]  S. Berot,et al.  Rheological characterization of microfibrillated cellulose suspensions after freezing , 2010 .

[322]  J. Hirvonen,et al.  Spray-dried nanofibrillar cellulose microparticles for sustained drug release. , 2012, International journal of pharmaceutics.

[323]  Y. Wan,et al.  Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds , 2011 .

[324]  L. Berglund,et al.  Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[325]  J. Mercier Cellulose Science and Technology , 2010 .

[326]  Kaiyan Qiu,et al.  An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770 , 2008 .

[327]  F. Pla,et al.  State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications , 2013 .

[328]  H. A. Silvério,et al.  Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste , 2013 .

[329]  B. Hsiao,et al.  Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes , 2014 .

[330]  L. Gibson The hierarchical structure and mechanics of plant materials , 2012, Journal of The Royal Society Interface.

[331]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[332]  Jingxuan Yang,et al.  Bacterial Cellulose-Based Biomimetic Nanofibrous Scaffold with Muscle Cells for Hollow Organ Tissue Engineering. , 2016, ACS Biomaterials Science & Engineering.

[333]  Richard O. Claus,et al.  Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility , 2004, Pharmaceutical Research.

[334]  M.C. Leal,et al.  Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial , 2015, Brazilian journal of otorhinolaryngology.

[335]  P. Chang,et al.  Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. , 2011, Colloids and surfaces. B, Biointerfaces.

[336]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[337]  C. Nicolae,et al.  Surface properties, thermal, and mechanical characteristics of poly(vinyl alcohol)–starch‐bacterial cellulose composite films , 2018 .

[338]  M. Phisalaphong,et al.  - Applications and Products—Nata de Coco , 2016 .

[339]  M. Motoki,et al.  Bacterial cellulose II. Processing of the gelatinous cellulose for food materials , 1992 .

[340]  L. Bergström,et al.  Understanding nanocellulose chirality and structure–properties relationship at the single fibril level , 2015, Nature Communications.

[341]  V. Landry,et al.  Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture , 2017 .

[342]  J. Seppälä,et al.  Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers , 2011 .

[343]  I. Lakatos,et al.  Colloids Surfaces A: Physicochem , 1998 .

[344]  D. Argyropoulos,et al.  Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface , 2011, Journal of Materials Science.

[345]  T. Kondo,et al.  Favorable 3D-network formation of chitin nanofibers dispersed in water prepared using aqueous counter collision , 2011 .

[346]  Yudong Zheng,et al.  Preparation of a carboxymethylated bacterial cellulose/polyaniline composite gel membrane and its characterization , 2016 .

[347]  Juming Yao,et al.  New Approach for Single-Step Extraction of Carboxylated Cellulose Nanocrystals for Their Use As Adsorbents and Flocculants , 2016 .

[348]  E. J. Foster,et al.  Isolation of cellulose nanocrystals from pseudostems of banana plants , 2014 .

[349]  Huaping Wang,et al.  Functionalized bacterial cellulose derivatives and nanocomposites. , 2014, Carbohydrate polymers.

[350]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[351]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[352]  Paul Gatenholm,et al.  Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. , 2007, Biomacromolecules.

[353]  Sabu Thomas,et al.  Biopolymer Nanocomposites: Processing, Properties, and Applications , 2013 .

[354]  Rani Elhajjar,et al.  Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: a review , 2016 .

[355]  M. Frey,et al.  Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers , 2013 .

[356]  J. Bouchard,et al.  Dispersibility in water of dried nanocrystalline cellulose. , 2012, Biomacromolecules.

[357]  M. Motoki,et al.  Bacterial cellulose IV. Application to processed foods , 1993 .

[358]  A. Magnin,et al.  Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers , 2011 .

[359]  E. J. Foster,et al.  Functionalized cellulose nanocrystals as nanocarriers for sustained fragrance release , 2015 .

[360]  R. M. Parker,et al.  Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry , 2016, ACS nano.

[361]  Thomas Heinze,et al.  Cellulose: Structure and Properties , 2015 .

[362]  R. Lahiji,et al.  Suspension viscosities and shape parameter of cellulose nanocrystals (CNC) , 2011 .

[363]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[364]  Naveed Ahmad,et al.  Bacterial cellulose film coating as drug delivery system: Physicochemical, thermal and drug release properties , 2012 .

[365]  Frédérique Brégier,et al.  PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. , 2017, Carbohydrate polymers.

[366]  A. Scallan The effect of acidic groups on the swelling of pulps: a review , 1983 .

[367]  A. Retegi,et al.  Biodegradable composites with improved barrier properties and transparency from the impregnation of PLA to bacterial cellulose membranes , 2016 .

[368]  Yudong Zheng,et al.  pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery , 2014 .

[369]  D. Kaplan,et al.  Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. , 2005, Biomaterials.

[370]  Horst Kessler,et al.  RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. , 2003, Biomaterials.

[371]  R. Brown,et al.  Gravity effects on cellulose assembly. , 1992, American journal of botany.

[372]  Sabu Thomas,et al.  Recent developments on nanocellulose reinforced polymer nanocomposites: A review , 2017 .

[373]  K. Oksman,et al.  Extrusion Processing of Green Biocomposites: Compounding, Fibrillation Efficiency, and Fiber Dispersion , 2014 .

[374]  Ali Naderi,et al.  Rheological measurements on nanofibrillated cellulose systems : A science in progress , 2015 .

[375]  Yixiang Wang,et al.  Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels , 2011 .

[376]  I. Ismail,et al.  Biocompatible and mucoadhesive bacterial cellulose-g-poly(acrylic acid) hydrogels for oral protein delivery. , 2014, Molecular pharmaceutics.

[377]  R. Reiner,et al.  Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size , 2017, Cellulose.

[378]  Yanyun Zhao,et al.  Development and preliminary field validation of water-resistant cellulose nanofiber based coatings with high surface adhesion and elasticity for reducing cherry rain-cracking , 2016 .

[379]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[380]  E. J. Foster,et al.  Fabrication and Properties of Polyethylene/Cellulose Nanocrystal Composites , 2017 .

[381]  A. Dufresne,et al.  Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers , 2012, Cellulose.

[382]  Gregory T. Schueneman,et al.  Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites , 2015 .

[383]  Shuping Dong,et al.  CYTOTOXICITY AND CELLULAR UPTAKE OF CELLULOSE NANOCRYSTALS , 2012 .

[384]  R. Müller,et al.  Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. , 2015, Biomaterials.

[385]  M. Mozetič,et al.  Surface modification of polyester by oxygen‐ and nitrogen‐plasma treatment , 2008 .

[386]  J. Luong,et al.  Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. , 2012, Nanoscale.

[387]  N. Laçin,et al.  Controlled Delivery of Ampicillin and Gentamycin from Cellulose Hydrogels and Their Antibacterial Efficiency , 2014 .

[388]  Raquel Costa,et al.  Improving bacterial cellulose for blood vessel replacement: Functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. , 2010, Acta biomaterialia.

[389]  A. Isogai,et al.  Influence of TEMPO-oxidized cellulose nanofibril length on film properties. , 2013, Carbohydrate polymers.

[390]  L. Berglund,et al.  Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. , 2007, Biomacromolecules.

[391]  M. Dubé,et al.  Pressure sensitive adhesive property modification using cellulose nanocrystals , 2018 .

[392]  Y. Bando,et al.  3D network of cellulose-based energy storage devices and related emerging applications , 2017 .

[393]  B. Paosawatyanyong,et al.  Surface modification of bacterial cellulose membrane by oxygen plasma treatment , 2016 .

[394]  J. Sugiyama,et al.  Combined infrared and electron diffraction study of the polymorphism of native celluloses , 1991 .

[395]  E. Kumacheva,et al.  Composite Hydrogels with Tunable Anisotropic Morphologies and Mechanical Properties , 2016 .

[396]  T. Elder,et al.  Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids , 2016 .

[397]  Zu-wei Ma,et al.  Surface modification and property analysis of biomedical polymers used for tissue engineering. , 2007, Colloids and surfaces. B, Biointerfaces.

[398]  J. Gong,et al.  Nonvolatile and Shape-Memorized Bacterial Cellulose Gels Swollen by Poly(ethylene glycol) , 2009 .

[399]  Sen'i Gakkaishi , 2004 .

[400]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[401]  A. Naderi,et al.  The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective , 2014, Cellulose.

[402]  O. Stelzer IND , 2020, Catalysis from A to Z.

[403]  Seong Il Jeong,et al.  Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals , 2010, Molecular & Cellular Toxicology.

[404]  Kentaro Abe,et al.  Property enhancement of optically transparent bionanofiber composites by acetylation , 2006 .

[405]  Feng Su,et al.  Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption , 2017 .

[406]  E. J. Foster,et al.  Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. , 2013, Biomacromolecules.

[407]  R. F. Nickerson,et al.  Cellulose Intercrystalline Structure , 1947 .

[408]  Kristin Syverud,et al.  Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels , 2014, Journal of biomaterials applications.

[409]  A. Eceiza,et al.  Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocomposites. , 2016, Carbohydrate polymers.

[410]  Canhui Lu,et al.  Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. , 2015, ACS applied materials & interfaces.

[411]  F. Müller,et al.  Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. , 2014, International journal of pharmaceutics.

[412]  Preparation of aqueous carbon material suspensions by aqueous counter collision , 2014 .

[413]  Athanasios Mantalaris,et al.  More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. , 2014, Macromolecular bioscience.

[414]  H. Yano,et al.  Fast and Robust Nanocellulose Width Estimation Using Turbidimetry. , 2016, Macromolecular rapid communications.

[415]  Lina Ma,et al.  Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors. , 2017, Chemistry.

[416]  Redouane Borsali,et al.  A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. , 2015, International journal of pharmaceutics.

[417]  J. Seppälä,et al.  Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties , 2016 .

[418]  Arthur J. Ragauskas,et al.  Synthesis of a novel cellulose nanowhisker-based drug delivery system , 2012 .