Systèmes d'inférence floue : collaboration expertise et données dans un environnement de modélisation intégrée à l'aide de FisPro

Fuzzy inference systems are likely to play a significant part in system modeling, when data and expert knowledge integration is important. The aim of this paper is to set up some guidelines for this kind of modeling, based on practical experience in the fields of Agronomy and Environment. We dicuss fuzzy system assets, their ability for data and expert knowledge integration in a common framework, and their position relatively to other models. The open source FisPro implementation is presented and the approach is illustrated through two detailed case studies. RÉSUMÉ. Les systèmes d’inférence floue peuvent avoir une place importante dans un processus de modélisation, quand l’intégration de données et d’expertise est nécessaire. L’objectif de cet article est de donner des lignes directrices pour ce type de modélisation, basées sur notre expérience pratique dans les domaines de l’agronomie et de l’environnement. Nous discutons les points originaux de ces systèmes, leur capacité à intégrer expertise et données dans un cadre commun, ainsi que leur place par rapport à d’autres modèles. L’implémentation dans le logiciel open source FisPro est également présentée et deux cas d’étude illustrent l’approche.

[1]  Richard Weber,et al.  Fuzzy-ID3: A class of methods for automatic knowledge acquisition , 1992 .

[2]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[3]  Cécile Coulon-Leroy,et al.  Prediction of vine vigor and precocity using data and knowledge-based fuzzy inference systems , 2012 .

[4]  Serge Guillaume,et al.  PRECISION VITICULTURE DATA ANALYSIS USING FUZZY INFERENCE SYSTEMS , 2007 .

[5]  Byeong Ho Kang,et al.  Expert-Driven Knowledge Discovery , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).

[6]  Monika Sester,et al.  Knowledge acquisition for the automatic interpretation of spatial data , 2000, Int. J. Geogr. Inf. Sci..

[7]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Didier Dubois,et al.  The three semantics of fuzzy sets , 1997, Fuzzy Sets Syst..

[9]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[10]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[11]  Serge Guillaume,et al.  Influence of micrometeorological factors on pesticide loss to the air during vine spraying : Data analysis with statistical and fuzzy inference models , 2008 .

[12]  Sébastien Destercke,et al.  An iterative approach to build relevant ontology-aware data-driven models , 2012, Inf. Sci..

[13]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[14]  Luis Magdalena,et al.  Expert guided integration of induced knowledge into a fuzzy knowledge base , 2006, Soft Comput..

[15]  José Valente de Oliveira,et al.  Semantic constraints for membership function optimization , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[16]  Luis Magdalena,et al.  Interpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview , 2003 .

[17]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[18]  Didier Dubois,et al.  Practical Inference With Systems of Gradual Implicative Rules , 2009, IEEE Transactions on Fuzzy Systems.

[19]  Gediminas Adomavicius,et al.  Expert-Driven Validation of Rule-Based User Models in Personalization Applications , 2004, Data Mining and Knowledge Discovery.

[20]  S. Guillaume,et al.  Development and validation of fuzzy logic inference to determine optimum rates of N for corn on the basis of field and crop features , 2010, Precision Agriculture.

[21]  Brigitte Charnomordic,et al.  Learning interpretable fuzzy inference systems with FisPro , 2011, Inf. Sci..

[22]  Serge Guillaume,et al.  Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..

[23]  Brigitte Charnomordic,et al.  Fuzzy partitions: A way to integrate expert knowledge into distance calculations , 2013, Inf. Sci..

[24]  T. Rajaram,et al.  Modeling of interactions among sustainability components of an agro-ecosystem using local knowledge through cognitive mapping and fuzzy inference system , 2010, Expert Syst. Appl..

[25]  A. Bégué,et al.  Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island , 2009 .

[26]  Bruno Tisseyre,et al.  Small Catchment Agricultural Management Using Decision Variables Defined at Catchment Scale and a Fuzzy Rule-Based System: A Mediterranean Vineyard Case Study , 2011 .

[27]  Brigitte Charnomordic,et al.  Parameter optimization of a fuzzy inference system using the FisPro open source software , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[28]  Brigitte Charnomordic,et al.  Open source software for modelling using agro-environmental georeferenced data. , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[29]  Brigitte Charnomordic,et al.  Fuzzy inference systems: An integrated modeling environment for collaboration between expert knowledge and data using FisPro , 2012, Expert Syst. Appl..

[30]  Brigitte Charnomordic,et al.  Generating an interpretable family of fuzzy partitions from data , 2004, IEEE Transactions on Fuzzy Systems.