Bond order potential for gold

We develop an analytic bond order potential for modelling of gold. The bond order formalism includes bond angularity and offers an alternative approach to the embedded atom type potentials frequently used to describe metallic bonding. The advantage of the developed potential is that it can be extended to describe interactions with covalent materials. Experimental and ab initio data of gold properties is used to fit the potential and a good description of bulk and defect properties is achieved. We use the potential to simulate melting of nanoclusters and find that the experimentally observed size dependent melting behaviour is reproduced qualitatively.

[1]  Kai Nordlund,et al.  Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon , 2002 .

[2]  Kai Nordlund,et al.  Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs , 2002 .

[3]  Brenner Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films , 1992, Physical review. B, Condensed matter.

[4]  Yaron Silberberg,et al.  Multiphoton plasmon-resonance microscopy. , 2003, Optics express.

[5]  Adri C. T. van Duin,et al.  Reactive forcefield for simulating gold surfaces and nanoparticles , 2010 .

[6]  P. Erhart,et al.  Interatomic potentials for the Be–C–H system , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  DePristo,et al.  Corrected effective-medium study of metal-surface relaxation. , 1991, Physical review. B, Condensed matter.

[8]  H. Schaefer Investigation of Thermal Equilibrium Vacancies in Metals by Positron Annihilation , 1987 .

[9]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[10]  S. Russo,et al.  On fitting a gold embedded atom method potential using the force matching method. , 2005, The Journal of chemical physics.

[11]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[12]  Canada.,et al.  Melting, freezing, and coalescence of gold nanoclusters , 1997, cond-mat/9703153.

[13]  Kai Nordlund,et al.  Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system , 2005 .

[14]  Kai Nordlund,et al.  Molecular dynamics simulation of ion ranges in the 1–100 keV energy range , 1995 .

[15]  O. Anderson,et al.  Anharmonicity and the equation of state for gold , 1989 .

[16]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[17]  Mills,et al.  Erratum: Collective excitations of semi-infinite superlattice structures: Surface plasmons, bulk plasmons, and the electron-energy-loss spectrum , 1984, Physical review. B, Condensed matter.

[18]  K. Nordlund,et al.  A study on the elongation of embedded Au nanoclusters in SiO2 by swift heavy ion irradiation using MD simulations , 2012 .

[19]  M. Caturla,et al.  Defect production in collision cascades in elemental semiconductors and fcc metals , 1998 .

[20]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[21]  Kai Nordlund,et al.  Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids , 1999 .

[22]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[23]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[24]  P. Jung Average atomic-displacement energies of cubic metals , 1981 .

[25]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[26]  K. Awazu,et al.  Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions , 2008 .

[27]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[28]  M. Caturla,et al.  Influence of the picosecond defect distribution on damage accumulation in irradiated α-Fe , 2012 .

[29]  N. Papanicolaou,et al.  Second-moment interatomic potential for gold and its application to molecular-dynamics simulations , 2004 .

[30]  R. Müller,et al.  Analytic bond-order potential for atomistic simulations of zinc oxide , 2006 .

[31]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[32]  F. Habraken,et al.  Ion beam shaping of Au nanoparticles in silica: particle size and concentration dependence , 2009 .

[33]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[34]  Cai,et al.  Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. , 1996, Physical review. B, Condensed matter.

[35]  A. V. van Duin,et al.  Development of a ReaxFF description for gold , 2008 .

[36]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[37]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[38]  D. Cookson,et al.  Energy dependent saturation width of swift heavy ion shaped embedded Au nanoparticles , 2009 .

[39]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[40]  H. Schroeder,et al.  Resistivity annealing of gold after 150 kev proton irradiation at 0.3 k , 1977 .

[41]  N. Papanicolaou,et al.  Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation , 1997 .

[42]  R. Conte,et al.  Derivation of an empirical potential for gold with angular corrections , 2008 .

[43]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[44]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[45]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[46]  P. Erhart,et al.  Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials , 2007 .

[47]  J. A. Alonso,et al.  Chemical Properties of Small Au Clusters: An Analysis of the Local Site Reactivity , 2007 .

[48]  Brenner Relationship between the embedded-atom method and Tersoff potentials. , 1989, Physical review letters.

[49]  J. Wallenius,et al.  Molecular dynamics simulations of threshold displacement energies in Fe , 2006 .

[50]  K. Takemura,et al.  Isothermal equation of state for gold with a He-pressure medium , 2008 .