Interference reflection separation from a single image

The interference image is defined as the superpositioning of a reflection image and an object image. A technique for separating reflection and object components of a single interference image is presented. The proposed method classifies edges of the interference image into either reflection or object related. Our method utilizes total variation (TV) method, blur measure, and region segmentation as evidence with a fuzzy integral technique to classify the edge pixels. Based on the results of edge pixel classification, the reflection and object components of the input image are reconstructed. Compared to previous published research, the proposed method is fast and requires no manual operations. The experimental results have demonstrated that the proposed method can perform separation of a single interference image effectively with small misadjustments and rapid convergence.

[1]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Y. Weiss,et al.  Separating reflections from a single image using local features , 2004, CVPR 2004.

[3]  Ramesh Raskar,et al.  Removing photography artifacts using gradient projection and flash-exposure sampling , 2005, SIGGRAPH 2005.

[4]  Carlo Gatta,et al.  A Spatially Variant White-Patch and Gray-World Method for Color Image Enhancement Driven by Local Contrast , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Qiuqi Ruan,et al.  Independent Gabor Analysis of Multiscale Total Variation-Based Quotient Image , 2008, IEEE Signal Processing Letters.

[6]  Michal Irani,et al.  Separating Transparent Layers through Layer Information Exchange , 2004, ECCV.

[7]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[8]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[9]  H Farid,et al.  Separating reflections from images by use of independent component analysis. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Yehoshua Y. Zeevi,et al.  BLIND SEPARATION OF REFLECTIONS USING SPARSE ICA , 2003 .

[11]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[12]  Anat Levin,et al.  User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Sei-Wang Chen,et al.  The Invariance Properties of Chromatic Characteristics , 2006, PSIVT.

[14]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[15]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[16]  Sei-Wang Chen,et al.  Intrinsic Image Extraction from a Single Image , 2009, J. Inf. Sci. Eng..

[17]  Barak A. Pearlmutter,et al.  Blind Source Separation via Multinode Sparse Representation , 2001, NIPS.

[18]  Michal Irani,et al.  Image sequence enhancement using multiple motions analysis , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Michal Irani,et al.  Separating transparent layers of repetitive dynamic behaviors , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[20]  Zia-ur Rahman,et al.  Properties and performance of a center/surround retinex , 1997, IEEE Trans. Image Process..

[21]  J. Todd Book Review: Digital image processing (second edition). By R. C. Gonzalez and P. Wintz, Addison-Wesley, 1987. 503 pp. Price: £29.95. (ISBN 0-201-11026-1) , 1988 .

[22]  Yoav Y. Schechner,et al.  Polarization-based decorrelation of transparent layers: The inclination angle of an invisible surface , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[23]  Sei-Wang Chen,et al.  A non-parametric blur measure based on edge analysis for image processing applications , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[24]  Yair Weiss,et al.  Deriving intrinsic images from image sequences , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Richard Szeliski,et al.  Stereo matching with reflections and translucency , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[26]  Richard Szeliski,et al.  Layer extraction from multiple images containing reflections and transparency , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  王俊明,et al.  An Edge Analysis Based Blur Measure for Image Processing Applications , 2006 .

[29]  Michio Sugeno,et al.  Fuzzy Measure and Fuzzy Integral , 1972 .

[30]  D. Dubois,et al.  Towards fuzzy differential calculus part 2: Integration on fuzzy intervals , 1982 .

[31]  Dorin Comaniciu,et al.  Total variation models for variable lighting face recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .