Visualization of multimodal polymer-shelled contrast agents using ultrasound contrast sequences: an experimental study in a tissue mimicking flow phantom

[1]  A. Trucco,et al.  Ultrasound assessment of polymer-shelled magnetic microbubbles used as dual contrast agents. , 2013, The Journal of the Acoustical Society of America.

[2]  Olivier Basset,et al.  Influences of bubble motion to second-harmonic inversion imaging , 2012, 2012 IEEE International Ultrasonics Symposium.

[3]  Satya V. V. N. Kothapalli,et al.  Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging. , 2012, Biomacromolecules.

[4]  G. Paradossi,et al.  A preliminary in vitro assessment of polymer-shelled microbubbles in contrast-enhanced ultrasound imaging. , 2012, Ultrasonics.

[5]  M. Tang,et al.  The assessment of microvascular flow and tissue perfusion using ultrasound imaging , 2010, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[6]  M. Averkiou,et al.  Investigation of the relationship of nonlinear backscattered ultrasound intensity with microbubble concentration at low MI. , 2010, Ultrasound in medicine & biology.

[7]  C. Pecorari,et al.  Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (part I). , 2009, Ultrasound in medicine & biology.

[8]  C. Pecorari,et al.  Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: ultrasound-induced fracture (part II). , 2009, Ultrasound in medicine & biology.

[9]  P. Mozetic,et al.  Polymer Microbubbles As Diagnostic and Therapeutic Gas Delivery Device , 2008 .

[10]  Paul A Dayton,et al.  Tailoring the Size Distribution of Ultrasound Contrast Agents: Possible Method for Improving Sensitivity in Molecular Imaging , 2007, Molecular imaging.

[11]  J. Gennisson,et al.  Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  N. Zaffaroni,et al.  Tethering functional ligands onto shell of ultrasound active polymeric microbubbles. , 2006, Biomacromolecules.

[13]  N. Saffari,et al.  Investigating the significance of multiple scattering in ultrasound contrast agent particle populations , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  T. Kondo,et al.  New tissue mimicking materials for ultrasound phantoms , 2005, IEEE Ultrasonics Symposium, 2005..

[15]  Gaio Paradossi,et al.  Stable polymeric microballoons as multifunctional device for biomedical uses: synthesis and characterization. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  P. Phillips,et al.  Contrast–agent detection and quantification , 2004, European radiology.

[17]  Christian Greis,et al.  Technology overview: SonoVue (Bracco, Milan). , 2004, European radiology.

[18]  Michael J Stewart,et al.  CONTRAST ECHOCARDIOGRAPHY , 2003, Heart.

[19]  Matthew Bruce,et al.  Ultrasound Contrast Imaging Research , 2003, Ultrasound quarterly.

[20]  V. Martorana,et al.  Tailoring of physical and chemical properties of macro- and microhydrogels based on telechelic PVA. , 2002, Biomacromolecules.

[21]  Ji Song,et al.  Influence of microbubble shell properties on ultrasound signal: Implications for low-power perfusion imaging. , 2002, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[22]  J. Zagzebski,et al.  Pressure-dependent attenuation in ultrasound contrast agents. , 2002, Ultrasound in medicine & biology.

[23]  Lars Hoff,et al.  Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging , 2001, Springer Netherlands.

[24]  M. Herregods,et al.  Enhanced Left Ventricular Endocardial Border Delineation with an Intravenous Injection of SonoVue, a New Echocardiography Contrast Agent: , 2000, Echocardiography.

[25]  A. Hoeft,et al.  Comparison of Indicator‐Dilution Curves Obtained from Dye Dilution and Echo Contrast Using Harmonic Power Doppler Imaging , 2000, Echocardiography.

[26]  Michel Schneider,et al.  Characteristics of SonoVue™ , 1999 .

[27]  S. Kaul,et al.  Technical factors that influence the determination of microbubble transit rate during contrast echocardiography. , 1995, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[28]  N de Jong,et al.  Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. , 1992, Ultrasonics.

[29]  R. Bing,et al.  Microbubble dynamics visualized in the intact capillary circulation. , 1984, Journal of the American College of Cardiology.

[30]  E. Madsen,et al.  Tissue mimicking materials for ultrasound phantoms. , 1978, Medical physics.

[31]  R. Gramiak,et al.  Echocardiography of the aortic root. , 1968, Investigative radiology.

[32]  Meng-Xing Tang,et al.  Frequency and pressure dependent attenuation and scattering by microbubbles. , 2007, Ultrasound in medicine & biology.

[33]  Michel Schneider Characteristics of SonoVuetrade mark. , 1999, Echocardiography.