Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations

Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While solving the inverse problem independently at every time point can give an image of the active brain at every millisecond, such a procedure does not capitalize on the temporal dynamics of the signal. Linear inverse methods (minimum-norm, dSPM, sLORETA, beamformers) typically assume that the signal is stationary: regularization parameter and data covariance are independent of time and the time varying signal-to-noise ratio (SNR). Other recently proposed non-linear inverse solvers promoting focal activations estimate the sources in both space and time while also assuming stationary sources during a time interval. However such a hypothesis holds only for short time intervals. To overcome this limitation, we propose time-frequency mixed-norm estimates (TF-MxNE), which use time-frequency analysis to regularize the ill-posed inverse problem. This method makes use of structured sparse priors defined in the time-frequency domain, offering more accurate estimates by capturing the non-stationary and transient nature of brain signals. State-of-the-art convex optimization procedures based on proximal operators are employed, allowing the derivation of a fast estimation algorithm. The accuracy of the TF-MxNE is compared with recently proposed inverse solvers with help of simulations and by analyzing publicly available MEG datasets.

[1]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[2]  Julien Mairal,et al.  Proximal Methods for Hierarchical Sparse Coding , 2010, J. Mach. Learn. Res..

[3]  K. Blinowska,et al.  Multichannel matching pursuit and EEG inverse solutions , 2005, Journal of Neuroscience Methods.

[4]  Simona Temereanca,et al.  STATE-SPACE SOLUTIONS TO THE DYNAMIC MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM USING HIGH PERFORMANCE COMPUTING. , 2011, The annals of applied statistics.

[5]  Sylvain Baillet,et al.  Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging , 2011, NeuroImage.

[6]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[7]  Stefan Haufe,et al.  Large-scale EEG/MEG source localization with spatial flexibility , 2011, NeuroImage.

[8]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[9]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[10]  Emery N. Brown,et al.  A spatiotemporal dynamic distributed solution to the MEG inverse problem , 2011, NeuroImage.

[11]  Polina Golland,et al.  A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[14]  Amir B. Geva Spatio-temporal matching pursuit (SToMP) for multiple source estimation of evoked potentials , 1996, Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel.

[15]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[16]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[17]  Asbjørn Mohr Drewes,et al.  Inverse Modeling on Decomposed Electroencephalographic Data: A Way Forward? , 2009, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[18]  Jens Haueisen,et al.  Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries , 2011, IPMI.

[19]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[20]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[21]  Prashant Parikh A Theory of Communication , 2010 .

[22]  Nelson J. Trujillo-Barreto,et al.  Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.

[23]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[24]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[25]  Andreas Ziehe,et al.  Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.

[26]  Jonathan Taylor,et al.  A family of interpretable multivariate models for regression and classification of whole-brain fMRI data , 2011 .

[27]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[28]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[29]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[30]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[31]  Christophe Grova,et al.  Wavelet-Based Localization of Oscillatory Sources From Magnetoencephalography Data , 2014, IEEE Transactions on Biomedical Engineering.

[32]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[33]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[34]  Michael Zibulevsky,et al.  Signal reconstruction in sensor arrays using sparse representations , 2006, Signal Process..

[35]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[36]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[37]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[38]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[39]  Eduardo Martínez-Montes,et al.  EEG source imaging with spatio‐temporal tomographic nonnegative independent component analysis , 2009, Human brain mapping.

[40]  Bertrand Thirion,et al.  Phase delays within visual cortex shape the response to steady-state visual stimulation , 2011, NeuroImage.

[41]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[42]  J. Haueisen,et al.  Nonlinear interactions of high-frequency oscillations in the human somatosensory system , 2008, Clinical Neurophysiology.

[43]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[44]  M. Scherg,et al.  Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.

[45]  Anders M. Dale,et al.  Dynamic Statistical Parametric Neurotechnique Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000 .

[46]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[47]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .