Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations
暂无分享,去创建一个
Jens Haueisen | Matti S. Hämäläinen | Matthieu Kowalski | Alexandre Gramfort | Daniel Strohmeier | M. Hämäläinen | M. Kowalski | J. Haueisen | D. Strohmeier | Alexandre Gramfort | J. Haueisen | A. Gramfort | Matti S. Hämäläinen | Matthieu Kowalski
[1] K. Matsuura,et al. Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.
[2] Julien Mairal,et al. Proximal Methods for Hierarchical Sparse Coding , 2010, J. Mach. Learn. Res..
[3] K. Blinowska,et al. Multichannel matching pursuit and EEG inverse solutions , 2005, Journal of Neuroscience Methods.
[4] Simona Temereanca,et al. STATE-SPACE SOLUTIONS TO THE DYNAMIC MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM USING HIGH PERFORMANCE COMPUTING. , 2011, The annals of applied statistics.
[5] Sylvain Baillet,et al. Spectral signal space projection algorithm for frequency domain MEG and EEG denoising, whitening, and source imaging , 2011, NeuroImage.
[6] R. Ilmoniemi,et al. Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.
[7] Stefan Haufe,et al. Large-scale EEG/MEG source localization with spatial flexibility , 2011, NeuroImage.
[8] R D Pascual-Marqui,et al. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.
[9] A. Dale,et al. Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.
[10] Emery N. Brown,et al. A spatiotemporal dynamic distributed solution to the MEG inverse problem , 2011, NeuroImage.
[11] Polina Golland,et al. A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.
[12] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[13] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[14] Amir B. Geva. Spatio-temporal matching pursuit (SToMP) for multiple source estimation of evoked potentials , 1996, Proceedings of 19th Convention of Electrical and Electronics Engineers in Israel.
[15] L. Kaufman,et al. Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.
[16] Olivier D. Faugeras,et al. A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.
[17] Asbjørn Mohr Drewes,et al. Inverse Modeling on Decomposed Electroencephalographic Data: A Way Forward? , 2009, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.
[18] Jens Haueisen,et al. Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries , 2011, IPMI.
[19] Robert D. Nowak,et al. Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.
[20] A. Dale,et al. Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.
[21] Prashant Parikh. A Theory of Communication , 2010 .
[22] Nelson J. Trujillo-Barreto,et al. Bayesian M/EEG source reconstruction with spatio-temporal priors , 2008, NeuroImage.
[23] A. Gramfort,et al. Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.
[24] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[25] Andreas Ziehe,et al. Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.
[26] Jonathan Taylor,et al. A family of interpretable multivariate models for regression and classification of whole-brain fMRI data , 2011 .
[27] Yurii Nesterov,et al. Cubic regularization of Newton method and its global performance , 2006, Math. Program..
[28] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[29] Polina Golland,et al. A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.
[30] R. Leahy,et al. EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.
[31] Christophe Grova,et al. Wavelet-Based Localization of Oscillatory Sources From Magnetoencephalography Data , 2014, IEEE Transactions on Biomedical Engineering.
[32] Karl J. Friston,et al. Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.
[33] W. Drongelen,et al. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.
[34] Michael Zibulevsky,et al. Signal reconstruction in sensor arrays using sparse representations , 2006, Signal Process..
[35] E. Somersalo,et al. Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.
[36] David P. Wipf,et al. A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.
[37] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[38] Théodore Papadopoulo,et al. OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.
[39] Eduardo Martínez-Montes,et al. EEG source imaging with spatio‐temporal tomographic nonnegative independent component analysis , 2009, Human brain mapping.
[40] Bertrand Thirion,et al. Phase delays within visual cortex shape the response to steady-state visual stimulation , 2011, NeuroImage.
[41] I F Gorodnitsky,et al. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.
[42] J. Haueisen,et al. Nonlinear interactions of high-frequency oscillations in the human somatosensory system , 2008, Clinical Neurophysiology.
[43] R. Ilmoniemi,et al. Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.
[44] M. Scherg,et al. Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model. , 1985, Electroencephalography and clinical neurophysiology.
[45] Anders M. Dale,et al. Dynamic Statistical Parametric Neurotechnique Mapping: Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000 .
[46] E. Halgren,et al. Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.
[47] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .