Accurate odometry and error modelling for a mobile robot

This paper presents the key steps involved in the design, calibration and error modelling of a low cost odometry system capable of achieving high accuracy dead-reckoning. A consistent error model for estimating position and orientation errors has been developed. Previous work on propagating odometry error covariance relies on incrementally updating the covariance matrix in small time steps. The approach taken here sums the noise theoretically over the entire path length to produce simple closed form expressions, allowing efficient covariance matrix updating after the completion of path segments. Systematic errors due to wheel radius and wheel base measurement were first calibrated with UMBmark test. Experimental results show that, despite its low cost, our system's performance, with regard to dead-reckoning accuracy, is comparable to some of the best reported odometry vehicle.

[1]  Pieter P. Leenhouts,et al.  ON THE COMPUTATION OF BI-NORMAL RADIAL ERROR , 1985 .

[2]  C. M. Wang,et al.  Location estimation and uncertainty analysis for mobile robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[3]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[4]  James L. Crowley,et al.  Position estimation for a mobile robot using vision and odometry , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[5]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[6]  Hugh F. Durrant-Whyte,et al.  Position estimation and tracking using optical range data , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[7]  Hugh F. Durrant-Whyte,et al.  An inertial navigation system for a mobile robot , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[8]  Michael R. M. Jenkin,et al.  Global navigation for ARK , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[9]  Johann Borenstein,et al.  UMBmark : a method for measuring, comparing, and correcting dead-reckoning errors in mobile robots , 1994 .

[10]  Shin'ichi Yuta,et al.  An implementation of on-board position estimation for a mobile robot-EKF based odometry and laser reflector landmarks detection , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[11]  Lindsay Kleeman,et al.  Mobile Robot Sonar for Target Localization and Classification , 1995, Int. J. Robotics Res..

[12]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[13]  Lindsay Kleeman,et al.  Odometry Error Covariance Estimation for Two Wheel Robot Vehicles , 1995 .

[14]  Evangelos E. Milios,et al.  Optimal global pose estimation for consistent sensor data registration , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[15]  M. Gini,et al.  Non-uniform dead-reckoning position estimate updates , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[16]  Lindsay Kleeman,et al.  Sonar based map building for a mobile robot , 1997, Proceedings of International Conference on Robotics and Automation.