An updated atlas of antibody evasion by SARS-CoV-2 Omicron sub-variants including BQ.1.1 and XBB

[1]  Peng Wang,et al.  Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution , 2022, bioRxiv.

[2]  Xuping Xie,et al.  Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster , 2022, Nature Medicine.

[3]  A. Sette,et al.  SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines , 2022, Science immunology.

[4]  Xuping Xie,et al.  Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1, and XBB.1 by 4 doses of parental mRNA vaccine or a BA.5-bivalent booster , 2022, bioRxiv.

[5]  J. Theiler,et al.  Substantial Neutralization Escape by the SARS-CoV-2 Omicron Variant BQ.1.1 , 2022, bioRxiv.

[6]  Hao Song,et al.  Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape , 2022, Nature Communications.

[7]  Fei Shao,et al.  Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75 , 2022, bioRxiv.

[8]  L. Dai,et al.  Omicron SARS-CoV-2 Neutralization from Inactivated and ZF2001 Vaccines , 2022, The New England journal of medicine.

[9]  Qian Wang,et al.  Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5 , 2022, Nature.

[10]  O. Pybus,et al.  Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa , 2022, Nature Medicine.

[11]  Fei Shao,et al.  BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection , 2022, Nature.

[12]  Liang Wang,et al.  Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1 , 2022, Cell.

[13]  Qihui Wang,et al.  Atlas of currently available human neutralizing antibodies against SARS-CoV-2 and escape by Omicron sub-variants BA.1/BA.1.1/BA.2/BA.3 , 2022, Immunity.

[14]  D. Stuart,et al.  Potent cross-reactive antibodies following Omicron breakthrough in vaccinees , 2022, Cell.

[15]  J. Cristina,et al.  An evolutionary insight into Severe Acute Respiratory Syndrome Coronavirus 2 Omicron variant of concern. , 2022, Virus Research.

[16]  S. Mahmud,et al.  Omicron SARS-CoV-2 variant of concern , 2022, Medicine.

[17]  B. Haynes,et al.  Structural diversity of the SARS-CoV-2 Omicron spike , 2022, bioRxiv.

[18]  Saniya M. Ansari,et al.  Transmission dynamics and mutational prevalence of the novel Severe acute respiratory syndrome coronavirus‐2 Omicron Variant of Concern , 2022, Journal of medical virology.

[19]  K. Dhama,et al.  Emergence of Omicron third lineage BA.3 and its importance , 2022, Journal of medical virology.

[20]  G. Gao,et al.  A binding-enhanced but enzymatic activity-eliminated human ACE2 efficiently neutralizes SARS-CoV-2 variants , 2022, Signal Transduction and Targeted Therapy.

[21]  G. Gao,et al.  Omicron variant of SARS-CoV-2 imposes a new challenge for the global public health , 2022, Biosafety and Health.

[22]  G. Gao,et al.  The mysterious origins of the Omicron variant of SARS-CoV-2 , 2022, The Innovation.

[23]  G. Gao,et al.  The emergence, genomic diversity and global spread of SARS-CoV-2 , 2021, Nature.

[24]  Hyeong Mi Kim,et al.  Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study , 2021, Science.

[25]  D. Hober,et al.  Emergence of Q493R mutation in SARS-CoV-2 spike protein during bamlanivimab/etesevimab treatment and resistance to viral clearance , 2021, Journal of Infection.

[26]  F. Dentali,et al.  Emergence of SARS-COV-2 Spike Protein Escape Mutation Q493R after Treatment for COVID-19 , 2021, Emerging infectious diseases.

[27]  M. Beltramello,et al.  SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape , 2021, Nature.

[28]  T. Stadler,et al.  CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to identify and characterize new variants , 2021, Bioinform..

[29]  J. Bloom,et al.  Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies , 2021, bioRxiv.

[30]  M. Koopmans,et al.  Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans , 2020, Science.

[31]  M. Beltramello,et al.  Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology , 2020, Cell.

[32]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[33]  J Gomez-Blanco,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2020, Communications Biology.

[34]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[35]  G. Gao,et al.  A Novel Coronavirus Genome Identified in a Cluster of Pneumonia Cases — Wuhan, China 2019−2020 , 2020, China CDC weekly.

[36]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[37]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[38]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[39]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[40]  Mark M. Davis,et al.  Antibody diversity: Somatic hypermutation of rearranged VH genes , 1981, Cell.

[41]  S. Tonegawa,et al.  Somatic generation of antibody diversity. , 1976, Nature.

[42]  Randy J Read,et al.  Recent developments in the PHENIX software for automated crystallographic structure determination. , 2004, Journal of synchrotron radiation.

[43]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .