High-Tc SQUID biomagnetometers

In this paper, we review the preparation technology, integration in measurement systems and tests of high-Tc superconducting quantum interference devices (SQUIDs) intended for biomagnetic applications. A focus is on developments specific to Forschungszentrum Jülich GmbH, Chalmers University of Technology, MedTech West, and the University of Gothenburg, while placing these results in the perspective of those achieved elsewhere. Sensor fabrication, including the deposition and structuring of epitaxial oxide heterostructures, materials for substrates, epitaxial bilayer buffers, bicrystal and step-edge Josephson junctions, and multilayer flux transformers are detailed. The properties of the epitaxial multilayer high-Tc direct current SQUID sensors, including their integration in measurement systems with special electronics and liquid nitrogen cryostats, are presented in the context of biomagnetic recording. Applications that include magnetic nanoparticle based molecular diagnostics, magnetocardiography, and magnetoencephalography are presented as showcases of high-Tc biomagnetic systems. We conclude by outlining future challenges.

[1]  Robert Oostenveld,et al.  Benchmarking for On-Scalp MEG Sensors , 2017, IEEE Transactions on Biomedical Engineering.

[2]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[3]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[4]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[5]  Aldo Jesorka,et al.  Operation of a high-TC SQUID gradiometer with a two-stage MEMS-based Joule–Thomson micro-cooler , 2016 .

[6]  M. Chiu,et al.  Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles , 2016, Journal of Nanobiotechnology.

[7]  V. P. Koshelets,et al.  High- $\rm{T}_{\rm{c}}$ Dual-SQUIDs With Graphoepitaxial Step-Edge Junctions , 2016, IEEE Transactions on Applied Superconductivity.

[8]  I. A. Gerasimov,et al.  Integration Issues of Graphoepitaxial High- ${\rm T}_{\rm c}$ SQUIDs Into Multichannel MEG Systems , 2015, IEEE Transactions on Applied Superconductivity.

[9]  D. Koelle,et al.  Low-Noise YBa$_2$Cu$_3$O$_7$ NanoSQUIDs for Performing Magnetization-Reversal Measurements on Magnetic Nanoparticles , 2015, 1503.06090.

[10]  Weiqing Wang,et al.  Diagnostic outcomes of magnetocardiography in patients with coronary artery disease. , 2015, International journal of clinical and experimental medicine.

[11]  Paul Seidel,et al.  Applied superconductivity : handbook on devices and applications , 2015 .

[12]  W. Halperin The impact of helium shortages on basic research , 2014, Nature Physics.

[13]  J. Dammers,et al.  Source localization of brain activity using helium-free interferometer , 2014 .

[14]  Justin F. Schneiderman,et al.  Information content with low- vs. high-T c SQUID arrays in MEG recordings: The case for high-T c SQUID-based MEG , 2014, Journal of Neuroscience Methods.

[15]  E. Riis Optical Magnetometry , 2013 .

[16]  U. Poppe,et al.  Graphoepitaxial Josephson junctions and DC SQUIDs , 2013, 2013 IEEE 14th International Superconductive Electronics Conference (ISEC).

[17]  M. Schiek,et al.  High-$T_{\rm c}$ DC SQUIDs for Magnetoencephalography , 2013, IEEE Transactions on Applied Superconductivity.

[18]  D. Koelle,et al.  Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields. , 2013, ACS nano.

[19]  Smadar Cohen,et al.  Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. , 2012, Nanomedicine.

[20]  M. Romalis,et al.  Subfemtotesla scalar atomic magnetometry using multipass cells. , 2012, Physical review letters.

[21]  F. Öisjöen High-Tc SQUIDs for Biomedical Applications: Immunoassays, Magnetoencephalography, and Ultra-Low Field Magnetic Resonance Imaging , 2012 .

[22]  J. Schneiderman,et al.  Noise properties of high-T-c superconducting flux transformers fabricated using chemical-mechanical polishing , 2012 .

[23]  H. Meyer,et al.  Highly sensitive miniature SQUID magnetometer fabricated with cross-type Josephson tunnel junctions , 2012 .

[24]  L. Trahms,et al.  Magnetoencephalography with a chip-scale atomic magnetometer , 2012, Biomedical optics express.

[25]  M. Elam,et al.  High-T-c superconducting quantum interference device recordings of spontaneous brain activity: Towards high-T-c magnetoencephalography , 2012 .

[26]  J. Olesen,et al.  The economic cost of brain disorders in Europe , 2012, European journal of neurology.

[27]  T. Bauch,et al.  Noise properties of nanoscale YBa2Cu3O7- δ Josephson junctions , 2011, 1112.0680.

[28]  Ming-Jang Chiu,et al.  Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer's disease in vitro. , 2011, ACS chemical neuroscience.

[29]  M. Weisend,et al.  Magnetoencephalography with a two color pump-probe fiber-coupled atomic magnetometer. , 2010 .

[30]  D. Drung,et al.  Moderately shielded high-Tc SQUID system for rat MCG , 2010 .

[31]  U. Poppe,et al.  Noise analysis of DC SQUIDs with damped superconducting flux transformers , 2010 .

[32]  Cathy P. Foley,et al.  YBCO step-edge junctions with high IcRn , 2010 .

[33]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[34]  Dag Winkler,et al.  A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. , 2010, Biosensors & bioelectronics.

[35]  O. Snigirev,et al.  Modulation SQUID electronics working with high-Tc SQUIDs in open space , 2008 .

[36]  Fredrik Öisjöen,et al.  High-Tc SQUID gradiometer system for immunoassays , 2008 .

[37]  C. Jia,et al.  High-resolution electron microscopy of microstructure of SrTiO3/BaZrO3 bilayer thin films on MgO substrates , 2007 .

[38]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[39]  C. Jia,et al.  Multilayer buffer for high-temperature superconductor devices on MgO , 2006 .

[40]  Alex I. Braginski,et al.  The SQUID handbook , 2006 .

[41]  C. Jia,et al.  Meandering of the grain boundary and d-wave effects in high-Tc bicrystal Josephson junctions , 2006 .

[42]  Y. Lee,et al.  High-T/sub C/ SQUID magnetometers for low noise measurements of magnetocardiograms , 2005, IEEE Transactions on Applied Superconductivity.

[43]  A. Kandori,et al.  A 16-channel high-Tc SQUID-magnetometer system for magnetocardiogram mapping , 2003 .

[44]  Dietmar Drung,et al.  High-Tc and low-Tc dc SQUID electronics , 2003 .

[45]  Tobias Lindström,et al.  Feasibility studies of ultra-small Josephson junctions for qubits , 2003 .

[46]  Keiji Enpuku,et al.  High T/sub c/ SQUID system and magnetic marker for biological immunoassays , 2003 .

[47]  R. Costo,et al.  Progress in the preparation of magnetic nanoparticles for applications in biomedicine , 2003, Magnetic Nanoparticles in Biosensing and Medicine.

[48]  Simon K. H. Lam,et al.  The investigation of transport properties on Y1Ba2Cu3O7−x step edge junctions by ion beam etching , 2003 .

[49]  Michael Faley,et al.  Operation of high-temperature superconductor magnetometer with submicrometer bicrystal junctions , 2002 .

[50]  W. Ludwig,et al.  Versatile high performance digital SQUID electronics , 2001 .

[51]  Meinhard Schilling,et al.  Low-noise biomagnetic measurements with a multichannel dc-SQUID system at 77 K , 2001 .

[52]  Michael Faley,et al.  Low noise HTS dc-SQUID flip-chip magnetometers and gradiometers , 2001 .

[53]  W Vennart,et al.  Magnetism in Medicine: A Handbook , 1999 .

[54]  T. S. Lee,et al.  A new study of bacterial motion: superconducting quantum interference device microscopy of magnetotactic bacteria. , 1999, Biophysical journal.

[55]  John Clarke,et al.  High-transition-temperature superconducting quantum interference devices , 1999 .

[56]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[57]  Jörn Beyer,et al.  Low-noise YBa2Cu3O7−x single layer dc superconducting quantum interference device (SQUID) magnetometer based on bicrystal junctions with 30° misorientation angle , 1998 .

[58]  Dietmar Drung,et al.  Integrated YBa2Cu3O7−x magnetometer for biomagnetic measurements , 1996 .

[59]  John Clarke,et al.  Addendum: ‘‘Low noise YBa2Cu3O7−x‐SrTiO3‐YBa2Cu3O7−x multilayers for improved superconducting magnetometers’’ [Appl. Phys. Lett. 66, 373 (1995)] , 1995 .

[60]  T. Matsui,et al.  Reduction of telegraph noise in superconducting short weak links , 1995, IEEE Transactions on Applied Superconductivity.

[61]  J. Clarke,et al.  Low noise YBa2Cu3O7−x–SrTiO3–YBa2Cu3O7−x multilayers for improved superconducting magnetometers , 1995 .

[62]  M. Siegel,et al.  Josephson junctions, interconnects, and crossovers on chemically etched edges of YBa2Cu3O7−x , 1993 .

[63]  T. Matsui,et al.  Neuromagnetic SQUID measurements in a helmet-type superconducting magnetic shield of BSCCO , 1993, IEEE Transactions on Applied Superconductivity.

[64]  J. Kirschvink,et al.  Magnetite biomineralization in the human brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Jia,et al.  Low‐resistivity epitaxial YBa2Cu3O7 thin films with improved microstructure and reduced microwave losses , 1992 .

[66]  M. Kawasaki,et al.  Low noise YBa2Cu3O7−δ grain boundary junction dc SQUIDs , 1990 .

[67]  John Clarke,et al.  Low‐frequency excess noise in Nb‐Al2O3‐Nb Josephson tunnel junctions , 1987 .

[68]  Vittorio Foglietti,et al.  Low-frequency noise in low 1/f noise dc SQUID's , 1986 .

[69]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[70]  J. Clarke,et al.  Investigation of 1/f noise in tunnel junction DC SQUIDS , 1983 .

[71]  John Clarke,et al.  Flicker (1/f) noise in tunnel junction dc SQUIDS , 1983 .

[72]  John Clarke,et al.  Tunnel junction dc SQUID: Fabrication, operation, and performance , 1976 .

[73]  M. Schiek,et al.  High-T c DC SQUIDs for Magnetoencephalography , 2013 .

[74]  V. Yu. Slobodchikov,et al.  The DC-SQUID-based Magnetocardiographic Systems for Clinical Use , 2012 .

[75]  Frank Boers,et al.  Magnetoencephalography using a Multilayer hightc DC SQUID Magnetometer , 2012 .

[76]  Alex I. Braginski,et al.  The SQUID Handbook Vol II: Applications of SQUIDs and SQUID Systems , 2006 .

[77]  C. Pantev,et al.  Magnetoencephalography using high temperature rf SQUIDs , 2005, Brain Topography.

[78]  N. Budnik,et al.  Detection of coronary artery disease in patients with normal or unspecifically changed ECG on the basis of magnetocardiography , 2001 .

[79]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[80]  Harold Weinstock,et al.  SQUID sensors : fundamentals, fabrication, and applications , 1996 .

[81]  A. A. Bakharev,et al.  Biomagnetic Multi-Channel System Consisting of Several Self-Contained Autonomous Small-Size Units , 1992 .

[82]  Heinz Lübbig,et al.  Superconducting Devices and Their Applications , 1992 .

[83]  J. Bednorz,et al.  Possible High T c Superconductivity in the BaL a-C u-0 System , 2022 .