Synchronous X-ray and Radio Mode Switches: A Rapid Global Transformation of the Pulsar Magnetosphere

Pondering Pulsars Pulsars are rapidly rotating, magnetized neutron stars that are powered by the loss of rotational energy. Because their emission is beamed, their light appears to pulse on and off at regular intervals. Changes in radio emission behavior have been observed for a number of pulsars, manifesting themselves as switches between ordered and disordered variations in intensity and pulse shapes, but these changes have not been seen at other wavelengths. Based on simultaneous radio and x-ray observations of pulsar PSR B0943+10, Hermsen et al. (p. 436) show that changes in emission state identified in radio measurements show counterpart fluctuations in the strength and temporal behavior of x-rays. Some of these changes were unexpected in their character and physical properties, challenging pulsar emission theories. The detection of synchronized switches in the radio and x-ray pulse properties of a pulsar challenges pulsar emission theories. Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

A. Noutsos | J. Eislöffel | M. J. Bentum | I. M. Avruch | M. Pilia | A. Shulevski | H. Falcke | S. Markoff | S. Yatawatta | A. Horneffer | V. N. Pandey | P. Weltevrede | P. Maat | A. Alexov | M. Kuniyoshi | P. Zarka | A. W. Gunst | W. Reich | A. Asgekar | W. Frieswijk | A. Bonafede | M. Iacobelli | M. Pandey-Pommier | C. Tasse | F. Breitling | B. Ciardi | S. Duscha | A. Karastergiou | V. I. Kondratiev | M. Mevius | H. Munk | H. Paas | A. G. Polatidis | J. Sluman | O. Wucknitz | J. de Plaa | F. Batejat | B. W. Stappers | K. Zagkouris | J. C. A. Miller-Jones | M. A. Garrett | S. Rawlings | M. W. Wise | R. Pizzo | M. Serylak | R. A. M. J. Wijers | A. Schoenmakers | H. Falcke | J. P. McKean | S. Rawlings | O. Wucknitz | F. Breitling | J. Hessels | B. Stappers | P. Zarka | J. van Leeuwen | P. Weltevrede | J. Miller-Jones | B. Ciardi | M. Steinmetz | H. Butcher | M. Bell | A. Horneffer | R. Pizzo | L. Bîrzan | A. Bonafede | G. Macario | H. Röttgering | C. Tasse | S. Yatawatta | V. Pandey | W. Frieswijk | M. Tagger | E. Keane | S. Markoff | A. Noutsos | L. Kuiper | A. Karastergiou | M. Wise | M. Brüggen | M. Garrett | R. Wijers | M. Kramer | W. Reich | J. Broderick | R. Fender | M. Bell | J. Grießmeier | V. Kondratiev | M. Serylak | C. Sobey | D. Mitra | M. Iacobelli | S. ter Veen | T. Hassall | M. Pilia | M. Pandey-Pommier | M. Hoeft | A. Alexov | A. Asgekar | M. Bentum | A. Gunst | M. Kuniyoshi | G. Kuper | P. Maat | H. Paas | A. Polatidis | A. Schoenmakers | J. Sluman | Y. Tang | F. Batejat | A. Shulevski | M. Mevius | I. Avruch | S. Duscha | H. Munk | F. de Gasperin | R. V. van Weeren | J. Eislöffel | L. Kuiper | F. de Gasperin | M. Brüggen | H. Röttgering | C. Sobey | J. W. T. Hessels | E. de Geus | M. Tagger | R. Fender | T. E. Hassall | M. Hoeft | Y. Tang | G. Wright | J. de Plaa | T. Coenen | J. Broderick | H. R. Butcher | G. Macario | G. Kuper | A. M. M. Scaife | R. J. van Weeren | E. Orrú | W. Hermsen | J. van Leeuwen | D. Mitra | J. M. Rankin | G. A. E. Wright | R. Basu | T. Coenen | J.-M. Grießmeier | E. Keane | M. Kramer | M. E. Bell | M. R. Bell | G. Bernardi | P. Best | L. Bîrzan | C. Ferrari | E. de Geus | G. Heald | R. Morganti | M. Steinmetz | S. ter Veen | R. Vermeulen | R. H. van de Brink | K. Zagkouris | P. Best | E. Orrú | C. Ferrari | W. Hermsen | R. Basu | G. Bernardi | G. Heald | R. Morganti | A. Scaife | R. Vermeulen

[1]  M. Mclaughlin,et al.  RADIO AND X-RAY OBSERVATIONS OF THE INTERMITTENT PULSAR J1832+0029 , 2012, 1208.6576.

[2]  M. Mclaughlin,et al.  THE DOUBLE PULSAR ECLIPSES. I. PHENOMENOLOGY AND MULTI-FREQUENCY ANALYSIS , 2012, 1201.2637.

[3]  S. Ransom,et al.  PSR J1841–0500: A RADIO PULSAR THAT MOSTLY IS NOT THERE , 2011, 1111.5870.

[4]  D. Mitra,et al.  The topology and polarization of subbeams associated with the ‘drifting’ subpulse emission of pulsar B0943+10 – VI. Analysis of an 8-h Giant Metrewave Radio Telescope observation , 2011, 1109.0835.

[5]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[6]  M. Mclaughlin,et al.  CHANDRA OBSERVATIONS OF THE HIGH-MAGNETIC-FIELD RADIO PULSAR J1718−3718 , 2010, 1011.5697.

[7]  A. Lyne,et al.  Switched Magnetospheric Regulation of Pulsar Spin-Down , 2010, Science.

[8]  A. N. Timokhin,et al.  Time-dependent pair cascades in magnetospheres of neutron stars - I. Dynamics of the polar cap cascade with no particle supply from the neutron star surface , 2010, 1006.2384.

[9]  D. Mitra,et al.  Dynamic emission properties of pulsars B0943+10 and B1822–09 – I. Comparison, and the discovery of a ‘Q’‐mode precursor , 2010 .

[10]  J. Chiang,et al.  THE FIRST FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS , 2009, 0910.1608.

[11]  Jitendra Kodilkar,et al.  A real-time software backend for the GMRT , 2009, 0910.1517.

[12]  G. Melikidze,et al.  XMM-Newton Observations of Radio Pulsars B0834+06 and B0826–34 and Implications for the Pulsar Inner Accelerator , 2008, 0806.0245.

[13]  D. Lorimer,et al.  A Periodically Active Pulsar Giving Insight into Magnetospheric Physics , 2006, Science.

[14]  Joanna M. RankinSvetlana A. Suleymanova The topology and polarisation of subbeams associated with the “drifting” subpulse emission of pulsar B0943+10 - IV. Q-to-B-mode recovery dynamics , 2006, astro-ph/0603780.

[15]  Bing Zhang,et al.  Formation of a Partially Screened Inner Acceleration Region in Radio Pulsars: Drifting Subpulses and Thermal X-Ray Emission from Polar Cap Surface , 2006, astro-ph/0601613.

[16]  A. Timokhin,et al.  On the force‐free magnetosphere of an aligned rotator , 2005, astro-ph/0511817.

[17]  G. Pavlov,et al.  An XMM-Newton Observation of the Drifting Pulsar B0943+10 , 2005, astro-ph/0503423.

[18]  M. Lyutikov,et al.  Magnetospheric Eclipses in the Double Pulsar System PSR J0737–3039 , 2005, astro-ph/0502333.

[19]  A. Lyne,et al.  Long-term timing observations of 374 pulsars , 2004 .

[20]  M. Weisskopf,et al.  Revealing the X-Ray Emission Processes of Old Rotation-powered Pulsars: XMM-Newton Observations of PSR B0950+08, PSR B0823+26, and PSR J2043+2740 , 2004, astro-ph/0405180.

[21]  Simon P.Goodwin,et al.  An idealized pulsar magnetosphere: the relativistic force-free approximation , 2004, astro-ph/0407227.

[22]  R. Strom,et al.  Enhanced Optical Emission During Crab Giant Radio Pulses , 2003, Science.

[23]  A. Harding,et al.  Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission. II. Inverse Compton Radiation Pair Fronts , 2001, astro-ph/0112392.

[24]  Bangalore,et al.  The topology and polarization of sub-beams associated with the ‘drifting’ sub-pulse emission of pulsar B0943+10 – II. Analysis of Gauribidanur 35-MHz observations , 2001, astro-ph/0110142.

[25]  Elmar Pfeffermann,et al.  The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera , 2001 .

[26]  et al,et al.  The European Photon Imaging Camera on XMM-Newton: The MOS cameras : The MOS cameras , 2000, astro-ph/0011498.

[27]  Avinash A. DeshpandeJoanna M. Rankin The topology and polarization of sub‐beams associated with the ‘drifting’ sub‐pulse emission of pulsar B0943+10 – I. Analysis of Arecibo 430‐ and 111‐MHz observations , 2000, astro-ph/0010048.

[28]  M. Sendyk,et al.  Spark Model for Pulsar Radiation Modulation Patterns , 2000, astro-ph/0002450.

[29]  Bing Zhang,et al.  Full Polar Cap Cascade Scenario: Gamma-Ray and X-Ray Luminosities from Spin-powered Pulsars , 1999, astro-ph/9911028.

[30]  J. Han,et al.  Three Modes of Pulsar Inner Gap , 1997 .

[31]  J. Rankin Toward an Empirical Theory of Pulsar Emission. VI. The Geometry of the Conal Emission Region: Appendix and Tables , 1993 .

[32]  J. Rankin Toward an Empirical Theory of Pulsar Emission. VI. The Geometry of the Conal Emission Region , 1993 .

[33]  J. Rankin Toward an empirical theory of pulsar emission. III: Mode changing, drifting subpulses, and pulse nulling , 1986 .

[34]  J. Arons,et al.  Pair formation above pulsar polar caps: Structure of the low altitude acceleration zone , 1979 .

[35]  Ruderman,et al.  Theory of pulsars: polar gaps, sparks, and coherent microwave radiation , 1975 .

[36]  R. Wielebinski,et al.  Pulse intensity histograms of pulsars , 1974 .

[37]  D. Backer Pulsar Nulling Phenomena , 1970, Nature.