Augmenting sonic reality. Cyberinstruments designed with digital waveguides

Abstract This article discusses how cyberinstruments created with digital waveguides—a technique for physical modelling synthesis, enable the augmentation of musical reality. These facilitate efficient replication of musical instruments and allow the extension of the properties of the replicas beyond the limitations of the physical world. The article examines how different composers have manipulated cyberinstruments designed with waveguide synthesis to stretch the sonic identities of physical instruments.

[1]  Perry R. Cook,et al.  A Meta-Wind-Instrument Physical Model, and a Meta-Controller for Real-Time Performance Control , 1992, ICMC.

[2]  Perry R. Cook,et al.  The Synthesis ToolKit (STK) , 1999, ICMC.

[3]  Cook,et al.  Measurements and efficient simulations of bowed bars , 2000, The Journal of the Acoustical Society of America.

[4]  Stefania Serafin,et al.  Stirring, Shaking, and mixing: Musicalizing everyday Actions , 2007, ICMC.

[5]  Stefania Serafin,et al.  Musical Applications of Banded Waveguides , 2004, Computer Music Journal.

[6]  Stefania Serafin,et al.  The Fujara: A Physical Model of The Bass Pipe Instrument in An Interactive Composition , 2006, ICMC.

[7]  Charles R. Sullivan Extending the Karplus-Strong Algorithm to Synthesize Electric Guitar Timbres with Distortion and Feedback , 1990 .

[8]  Giovanni De Poli,et al.  Algorithms and Structures for Synthesis Using Physical Models , 1992, Computer Music Journal.

[9]  David Zicarelli,et al.  An Extensible Real-time Signal Processing Environment for Max , 1998, ICMC.

[10]  Stefania Serafin,et al.  The sound of friction: Real-time models, playability and musical applications , 2004 .

[11]  Claude Cadoz The Physical Model as Metaphor for Musical Creation: "pico..TERA", a piece generated by physical model , 2002, ICMC.

[12]  Julius O. Smith,et al.  Physical Modeling with the 2-D Digital Waveguide Mesh , 1993, ICMC.

[13]  Stefania Serafin,et al.  Cyberinstruments via Physical Modeling Synthesis: Compositional Applications , 2007, Leonardo Music Journal.

[14]  Perry R. Cook,et al.  Physically Informed Sonic Modeling (PhISM): Synthesis of percussive sounds , 1997 .

[15]  Stefania Serafin,et al.  Computer models and compositional applications of plastic corrugated tubes , 2005, Organised Sound.

[16]  Julius O. Smith,et al.  Virtual Acoustic Musical Instruments: Review and Update , 2004 .

[17]  C. Chafe Oxygen flute: A computer music instrument that grows , 2005 .

[18]  Julius O. Smith,et al.  Physical Modeling Using Digital Waveguides , 1992 .

[19]  Miller Puckette,et al.  Real-time audio analysis tools for Pd and MSP , 1998, ICMC.

[20]  Perry R. Cook,et al.  Re-coupling: the uBlotar synthesis instrument and the sHowl speaker-feedback controller , 2004, ICMC.

[21]  Stefania Serafin,et al.  MODELING BOWL RESONATORS USING CIRCULAR WAVEGUIDE NETWORKS , 2002 .

[22]  Julius O. Smith,et al.  Digital Waveguide Modeling of Woodwind Toneholes , 1997, ICMC.

[23]  Miller Puckette,et al.  Pure Data , 1997, ICMC.

[24]  Miller Puckette,et al.  Max at Seventeen , 2002, Computer Music Journal.

[25]  Kevin Karplus,et al.  Digital Synthesis of Plucked-String and Drum Timbers , 1983 .

[26]  Julius O. Smith,et al.  Extensions of the Karplus-Strong Plucked-String Algorithm , 1983 .

[27]  Stefania Serafin,et al.  Proceedings of the International Computer Music Conference , 2007 .

[28]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .