Biomimetic flow control based on morphological features of living creaturesa)

Despite the long history of biomimetics (or biomimetic engineering), a scientific discipline of implementing nature-inspired ideas to engineering systems for their performance enhancement, successful developments have been made only recently, especially in the field of flow control. In the present paper, we discuss flow controls based on the biomimetic approach, paying special attention to surface morphology of living creatures, to develop novel concepts or devices for drag reduction and aerodynamic performance enhancement. We consider two types of flow control devices: (1) devices attached or added to wing surfaces for high aerodynamic performance and (2) smart surfaces for low skin friction. Several examples of successful biomimetic flow controls are presented and discussed in this paper. Further issues like the difference in the operating environments (e.g., the Reynolds number) between the biological and engineering systems are discussed. Finally, guidelines for effective integration of engineering an...

[1]  A. Millward,et al.  The hydrodynamic characteristics of six scallops of the Super Family Pectinacea, Class Bivalvia , 1992 .

[2]  R. H. Buckholz,et al.  The Functional Role of Wing Corrugations in Living Systems , 1986 .

[3]  Mohamed Gad-el-Hak Flow Control: Contents , 2000 .

[4]  J. Rothstein Slip on Superhydrophobic Surfaces , 2010 .

[5]  U. Norberg Structure, form, and function of flight in engineering and the living world. , 2002 .

[6]  Haecheon Choi,et al.  CONTROL OF FLOW OVER A BLUFF BODY , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[7]  Laurens E. Howle,et al.  Experimental Evaluation of Sinusoidal Leading Edges , 2007 .

[8]  Shigeru Sunada,et al.  The Relationship Between Dragonfly Wing Structure and Torsional Deformation , 1998 .

[9]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[10]  Werner Nachtigall,et al.  Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vgeln@@@Comparative studies on the function of the bastard wing (alula spuria) in the flight biology of birds: I. Der Daumenfittich als Hochauftriebserzeuger@@@I. The alula as a producer of high lift , 1971 .

[11]  Byungho Lee,et al.  Aerodynamic Performance of a Gliding Swallowtail Butterfly Wing Model , 2010 .

[12]  Dawn P. Noren,et al.  Swimming speed, respiration rate, and estimated cost of transport in adult killer whales , 2009 .

[13]  Haibo Dong,et al.  A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight , 2008, Bioinspiration & biomimetics.

[14]  Koji Fukagata,et al.  Microelectromechanical Systems–Based Feedback Control of Turbulence for Skin Friction Reduction , 2009 .

[15]  D. Bushnell,et al.  Turbulence Control in Wall Flows , 1989 .

[16]  B. Morton Swimming in Amusium pleuronectes (Bivahia: Pectinidae)* , 2009 .

[17]  Wolfram Hage,et al.  Experiments with three-dimensional riblets as an idealized model of shark skin , 2000 .

[18]  G. Schewe On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers , 1983, Journal of Fluid Mechanics.

[19]  Javier Jiménez,et al.  Drag reduction by riblets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[21]  J. Lumley,et al.  CONTROL OF TURBULENCE , 1998 .

[22]  Ilan Kroo,et al.  DRAG DUE TO LIFT: Concepts for Prediction and Reduction , 2001 .

[23]  V. Walters BODY FORM AND SWIMMING PERFORMANCE IN THE SCOMBROID FISHES , 1962 .

[24]  Itaru Hayami,et al.  Living and fossil scallop shells as airfoils: an experimental study , 1991, Paleobiology.

[25]  Ernst A. van Nierop,et al.  How bumps on whale flippers delay stall: an aerodynamic model. , 2008, Physical review letters.

[26]  Moe W. Rosen,et al.  Fluid Friction of Fish Slimes , 1971, Nature.

[27]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[28]  Max F. Platzer,et al.  Design and development considerations for biologically inspired flapping-wing micro air vehicles , 2009 .

[29]  D. W. Bechert,et al.  Fluid Mechanics of Biological Surfaces and their Technological Application , 2000, Naturwissenschaften.

[30]  Hui Hu,et al.  Bioinspired Corrugated Airfoil at Low Reynolds Numbers , 2008 .

[31]  D. M. Bushnell,et al.  DRAG REDUCTION IN NATURE , 1991 .

[32]  W. Schwarz,et al.  Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer , 1993, Journal of Fluid Mechanics.

[33]  R. R. Graham,et al.  The Silent Flight of Owls , 1934, The Journal of the Royal Aeronautical Society.

[34]  Robert L. Ash,et al.  Effect of compliant wall motion on turbulent boundary layers , 1977 .

[35]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[36]  Ryutaro Hino,et al.  Turbulent drag reduction by the seal fur surface , 2006 .

[37]  John Kim,et al.  Control of turbulent boundary layers , 2003 .

[38]  Parviz Moin,et al.  Direct numerical simulation of turbulent flow over riblets , 1993, Journal of Fluid Mechanics.

[39]  A. Kesel Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils. , 2000, The Journal of experimental biology.

[40]  Parviz Moin,et al.  Active turbulence control for drag reduction in wall-bounded flows , 1994, Journal of Fluid Mechanics.

[41]  G. Benz,et al.  Isotopic composition of recent shark teeth as a proxy for environmental conditions , 2001 .

[42]  J. Hoolihan Horizontal and vertical movements of sailfish (Istiophorus platypterus) in the Arabian Gulf, determined by ultrasonic and pop-up satellite tagging , 2005 .

[43]  M. E. Demont,et al.  Scallop Shells Exhibit Optimization of Riblet Dimensions for Drag Reduction. , 1997, The Biological bulletin.

[44]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[45]  Petros Koumoutsakos,et al.  Evolutionary optimization of an anisotropic compliant surface for turbulent friction drag reduction , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[46]  Mao Sun,et al.  Aerodynamic effects of corrugation in flapping insect wings in hovering flight , 2011, Journal of Experimental Biology.

[47]  Haecheon Choi,et al.  Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes , 2012, Bioinspiration & biomimetics.

[48]  Haecheon Choi,et al.  Sectional lift coefficient of a flapping wing in hovering motion , 2010 .

[49]  M. E. Demont,et al.  Hydrodynamics of scallop locomotion: unsteady fluid forces on clapping shells , 1996, Journal of Fluid Mechanics.

[50]  E. R. Trueman,et al.  Swimming of the scallop, Chlamys opercularis (L.) , 1971 .

[51]  A. Seifert,et al.  Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000 , 2009 .

[52]  Bharat Bhushan,et al.  Biomimetics: lessons from nature–an overview , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  F. Fish,et al.  The tubercles on humpback whales' flippers: application of bio-inspired technology. , 2011, Integrative and comparative biology.

[54]  Mehmet Atlar,et al.  Turbulent drag reduction using compliant surfaces , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[55]  M. J. Walsh,et al.  Riblets as a Viscous Drag Reduction Technique , 1983 .

[56]  Z. Jane Wang,et al.  DISSECTING INSECT FLIGHT , 2005 .

[57]  Barbara A. Block,et al.  Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes , 1999 .

[58]  B. Cantwell,et al.  An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder , 1983, Journal of Fluid Mechanics.

[59]  Werner Nachtigall,et al.  Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln , 2004, Zeitschrift für vergleichende Physiologie.

[60]  M. Dadswell,et al.  Swimming of juvenile sea scallops, Placopecten magellanicus (Gmelin): A minimum size for effective swimming? , 1993 .

[61]  Lawrence Sirovich,et al.  Direct numerical simulation of turbulent flow over a modeled riblet covered surface , 1995, Journal of Fluid Mechanics.

[62]  Haecheon Choi,et al.  Does the sailfish skin reduce the skin friction like the shark skin , 2007 .

[63]  R. Wootton,et al.  WING SHAPE AND FLIGHT BEHAVIOUR IN BUTTERFLIES (LEPIDOPTERA: PAPILIONOIDEA AND HESPERIOIDEA): A PRELIMINARY ANALYSIS , 1988 .

[64]  Adrian L. R. Thomas,et al.  Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis , 2007, Journal of Experimental Biology.

[65]  Mohamed Gad-el-Hak Flow Control: Flow Control , 2000 .

[66]  J. Mauseth Structure-function relationships in highly modified shoots of cactaceae. , 2006, Annals of botany.

[67]  Paul T. Soderman,et al.  Investigation of Acoustic Effects of Leading-Edge Serrations on Airfoils , 1974 .

[68]  D. W. Bechert,et al.  Experiments on drag-reducing surfaces and their optimization with an adjustable geometry , 1997, Journal of Fluid Mechanics.

[69]  Shinichiro Ito Aerodynamic Influence of Leading-Edge Serrations on an Airfoil in a Low Reynolds Number , 2009 .

[70]  Hao Liu,et al.  Recent progress in flapping wing aerodynamics and aeroelasticity , 2010 .

[71]  Mohamed Gad-el-Hak,et al.  Superhydrophobic surfaces: From the lotus leaf to the submarine , 2012 .

[72]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[73]  R. W. Blake,et al.  Swimming behaviors and speeds of wild Dall's porpoises (Phocoenoides dalli) , 1994 .

[74]  C. Rees Form and function in corrugated insect wings , 1975, Nature.

[75]  J. Dabiri Optimal Vortex Formation as a Unifying Principle in Biological Propulsion , 2009 .

[76]  Christopher White,et al.  Mechanics and Prediction of Turbulent Drag Reduction with Polymer Additives , 2008 .

[77]  K. Hansen,et al.  Performance Variations of Leading-Edge Tubercles for Distinct Airfoil Profiles , 2011 .

[78]  J. Mauseth,et al.  Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. , 2000, American journal of botany.

[79]  T. Y. Wu Fish Swimming and Bird/Insect Flight , 2011 .

[80]  S. Vogel Squirt smugly, scallop! , 1997, Nature.

[81]  M. Griffith,et al.  What did the first cactus look like? An attempt to reconcile the morphological and molecular evidence , 2004 .

[82]  Dongkon Lee,et al.  Drag reduction in flow over a two-dimensional bluff body with a blunt trailing edge using a new passive device , 2006, Journal of Fluid Mechanics.

[83]  S. Ceccio Friction Drag Reduction of External Flows with Bubble and Gas Injection , 2010 .

[84]  Mohamed Gad-el-Hak,et al.  Flow Control: The Future , 2001 .

[85]  E. Achenbach,et al.  The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air , 1977 .

[86]  F. Fish,et al.  Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers , 2004 .

[87]  J. Lumley,et al.  Turbulence over a compliant surface: numerical simulation and analysis , 2003, Journal of Fluid Mechanics.

[88]  Julian F V Vincent Deconstructing the design of a biological material. , 2005, Journal of theoretical biology.

[89]  J. M. Bush,et al.  Walking on Water: Biolocomotion at the Interface , 2006 .

[90]  P. Lissaman,et al.  Low-Reynolds-Number Airfoils , 1983 .