Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

In this paper, we revisit the notion of the “minus logarithm of stationary probability” as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate function when a stochastic process approaches a deterministic limit. We then undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in a necessary and sufficient condition for the criticality of stochastic systems. This condition is then discussed in the context of recent results about criticality in biological systems.

[1]  Joel L. Lebowitz,et al.  Boltzmann's Entropy and Time's Arrow , 1993 .

[2]  Ping Ao,et al.  A Theory of Mesoscopic Phenomena: Time Scales, Emergent Unpredictability, Symmetry Breaking and Dynamics Across Different Levels , 2013 .

[3]  Rudolf Wegscheider,et al.  Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme , 1901 .

[4]  Daan Frenkel,et al.  Gibbs, Boltzmann, and negative temperatures , 2014, 1403.4299.

[5]  Michael J. Berry,et al.  The simplest maximum entropy model for collective behavior in a neural network , 2012, 1207.6319.

[6]  H. Haken,et al.  Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium , 1971 .

[7]  Arieh Ben-Naim,et al.  A Farewell to Entropy:Statistical Thermodynamics Based on Information , 1992 .

[8]  R. Kubo,et al.  Fluctuation and relaxation of macrovariables , 1973 .

[9]  G N Lewis,et al.  A New Principle of Equilibrium. , 1925, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Lebowitz,et al.  On the (Boltzmann) entropy of non-equilibrium systems , 2003, cond-mat/0304251.

[11]  U. Seifert Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.

[12]  E. Montroll,et al.  Statistical Mechanics of Transport and Nonequilibrium Processes , 1954 .

[13]  C. Jarzynski Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .

[14]  E. T. Jaynes Gibbs vs Boltzmann Entropies , 1965 .

[15]  Friedrich Hasenöhrl,et al.  Wissenschaftliche Abhandlungen: Weitere Studien über das Wärmegleichgewicht unter Gas-molekülen , 2012 .

[16]  Peter Maurer,et al.  Introduction to Statistical Thermodynamics , 1960 .

[17]  L. Yin,et al.  Existence and construction of dynamical potential in nonequilibrium processes without detailed balance , 2006 .

[18]  R A Blythe,et al.  Lee-Yang zeros and phase transitions in nonequilibrium steady states. , 2002, Physical review letters.

[19]  Ioannis G. Kevrekidis,et al.  Existence and construction of dynamical potential in nonequilibrium processes without detailed balance , 2016 .

[20]  A. Hobson A new theorem of information theory , 1969 .

[21]  L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .

[23]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[24]  W. Bialek,et al.  Rediscovering the power of pairwise interactions , 2007, 0712.4397.

[25]  J. H. Gibbs,et al.  Statistical Mechanics of Helix‐Coil Transitions in Biological Macromolecules , 1959 .

[26]  G. Lindblad Entropy, information and quantum measurements , 1973 .

[27]  Haidong Feng,et al.  Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem. , 2011, The Journal of chemical physics.

[28]  H Qian Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[30]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[31]  Péter Érdi,et al.  Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological Applications , 2014 .

[32]  Hong Qian,et al.  Chemical reaction kinetic perspective with mesoscopic nonequilibrium thermodynamics , 2016, Complexity Science.

[33]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[34]  W. Bialek Biophysics: Searching for Principles , 2012 .

[35]  Jürgen Voigt Stochastic operators, information, and entropy , 1981 .

[36]  Hong Qian,et al.  Stochastic dynamics: Markov chains and random transformations , 2016 .

[37]  Joel L. Lebowitz,et al.  BOLTZMANN'S ENTROPY AND TIME'S ARROW Given that microscopic physical lows are reversible, why do all macroscopic events have a preferred time direction? Doltzmann's thoughts on this question have withstood the test of time. , 1994 .

[38]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[39]  A. Kolmogoroff Zur Theorie der Markoffschen Ketten , 1936 .

[40]  Stefan Hilbert,et al.  Consistent thermostatistics forbids negative absolute temperatures , 2013, Nature Physics.

[41]  W. Bialek,et al.  Are Biological Systems Poised at Criticality? , 2010, 1012.2242.

[42]  Niccolò Guicciardini,et al.  Isaac Newton on Mathematical Certainty and Method , 2011 .

[43]  H. Qian,et al.  Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. , 2012, Molecular & cellular biomechanics : MCB.

[44]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[45]  Peter H. Richter Information and Self-organization: A Macroscopic Approach to Complex Systems, Hermann Haken. Springer, New York (1988), $59.50 (cloth), 196 pp , 1991 .

[46]  Hong Qian,et al.  Physical origins of entropy production, free energy dissipation, and their mathematical representations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Bruno H. Zimm,et al.  Contribution to the Theory of Critical Phenomena , 1951 .

[48]  W. Byers Brown,et al.  Constant pressure ensembles in statistical mechanics , 1958 .

[49]  Hong Qian,et al.  Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory. , 2016, Physical review. E.

[50]  Rodney W. Johnson,et al.  Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.

[51]  D. Bedeaux,et al.  Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[53]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[54]  Michele Campisi,et al.  Construction of microcanonical entropy on thermodynamic pillars. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  David J Schwab,et al.  Zipf's law and criticality in multivariate data without fine-tuning. , 2013, Physical review letters.

[56]  H. Qian,et al.  Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law , 2016, 1604.07115.

[57]  C. Kittel,et al.  Phase Transition of a Molecular Zipper , 1969 .

[58]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[59]  R. A. Sack,et al.  Pressure-dependent partition functions , 1959 .

[60]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[61]  Hong Qian,et al.  Stochastic theory of nonequilibrium steady states and its applications. Part I , 2012 .

[62]  A. Münster,et al.  Zur Theorie der generalisierten Gesamtheiten , 1959 .

[63]  John F. Nagle,et al.  The One-Dimensional KDP Model in Statistical Mechanics , 1968 .

[64]  K. Kaplan H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd Edition). XI + 355 S., 152 Abb. Berlin—Heidelberg—New York 1978. Springer-Verlag. DM 66,00 , 1980 .

[65]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[66]  René Lefever,et al.  Comment on the kinetic potential and the maxwell construction in non-equilibrium chemical phase transitions , 1977 .

[67]  M. Levitt The birth of computational structural biology , 2001, Nature Structural Biology.

[68]  H. Haken Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices , 1983 .