Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality
暂无分享,去创建一个
[1] Joel L. Lebowitz,et al. Boltzmann's Entropy and Time's Arrow , 1993 .
[2] Ping Ao,et al. A Theory of Mesoscopic Phenomena: Time Scales, Emergent Unpredictability, Symmetry Breaking and Dynamics Across Different Levels , 2013 .
[3] Rudolf Wegscheider,et al. Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reactionskinetik homogener Systeme , 1901 .
[4] Daan Frenkel,et al. Gibbs, Boltzmann, and negative temperatures , 2014, 1403.4299.
[5] Michael J. Berry,et al. The simplest maximum entropy model for collective behavior in a neural network , 2012, 1207.6319.
[6] H. Haken,et al. Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium , 1971 .
[7] Arieh Ben-Naim,et al. A Farewell to Entropy:Statistical Thermodynamics Based on Information , 1992 .
[8] R. Kubo,et al. Fluctuation and relaxation of macrovariables , 1973 .
[9] G N Lewis,et al. A New Principle of Equilibrium. , 1925, Proceedings of the National Academy of Sciences of the United States of America.
[10] J. Lebowitz,et al. On the (Boltzmann) entropy of non-equilibrium systems , 2003, cond-mat/0304251.
[11] U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines , 2012, Reports on progress in physics. Physical Society.
[12] E. Montroll,et al. Statistical Mechanics of Transport and Nonequilibrium Processes , 1954 .
[13] C. Jarzynski. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the Nanoscale , 2011 .
[14] E. T. Jaynes. Gibbs vs Boltzmann Entropies , 1965 .
[15] Friedrich Hasenöhrl,et al. Wissenschaftliche Abhandlungen: Weitere Studien über das Wärmegleichgewicht unter Gas-molekülen , 2012 .
[16] Peter Maurer,et al. Introduction to Statistical Thermodynamics , 1960 .
[17] L. Yin,et al. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance , 2006 .
[18] R A Blythe,et al. Lee-Yang zeros and phase transitions in nonequilibrium steady states. , 2002, Physical review letters.
[19] Ioannis G. Kevrekidis,et al. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance , 2016 .
[20] A. Hobson. A new theorem of information theory , 1969 .
[21] L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen , 1970 .
[23] Massimiliano Esposito,et al. Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.
[24] W. Bialek,et al. Rediscovering the power of pairwise interactions , 2007, 0712.4397.
[25] J. H. Gibbs,et al. Statistical Mechanics of Helix‐Coil Transitions in Biological Macromolecules , 1959 .
[26] G. Lindblad. Entropy, information and quantum measurements , 1973 .
[27] Haidong Feng,et al. Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: curvature, gauge field, and generalized fluctuation-dissipation theorem. , 2011, The Journal of chemical physics.
[28] H Qian. Relative entropy: free energy associated with equilibrium fluctuations and nonequilibrium deviations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[30] E. C. Titchmarsh,et al. The Laplace Transform , 1991, Heat Transfer 1.
[31] Péter Érdi,et al. Stochastic Chemical Kinetics: Theory and (Mostly) Systems Biological Applications , 2014 .
[32] Hong Qian,et al. Chemical reaction kinetic perspective with mesoscopic nonequilibrium thermodynamics , 2016, Complexity Science.
[33] T. D. Lee,et al. Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .
[34] W. Bialek. Biophysics: Searching for Principles , 2012 .
[35] Jürgen Voigt. Stochastic operators, information, and entropy , 1981 .
[36] Hong Qian,et al. Stochastic dynamics: Markov chains and random transformations , 2016 .
[37] Joel L. Lebowitz,et al. BOLTZMANN'S ENTROPY AND TIME'S ARROW Given that microscopic physical lows are reversible, why do all macroscopic events have a preferred time direction? Doltzmann's thoughts on this question have withstood the test of time. , 1994 .
[38] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[39] A. Kolmogoroff. Zur Theorie der Markoffschen Ketten , 1936 .
[40] Stefan Hilbert,et al. Consistent thermostatistics forbids negative absolute temperatures , 2013, Nature Physics.
[41] W. Bialek,et al. Are Biological Systems Poised at Criticality? , 2010, 1012.2242.
[42] Niccolò Guicciardini,et al. Isaac Newton on Mathematical Certainty and Method , 2011 .
[43] H. Qian,et al. Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape. , 2012, Molecular & cellular biomechanics : MCB.
[44] T. Kurtz. The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .
[45] Peter H. Richter. Information and Self-organization: A Macroscopic Approach to Complex Systems, Hermann Haken. Springer, New York (1988), $59.50 (cloth), 196 pp , 1991 .
[46] Hong Qian,et al. Physical origins of entropy production, free energy dissipation, and their mathematical representations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[47] Bruno H. Zimm,et al. Contribution to the Theory of Critical Phenomena , 1951 .
[48] W. Byers Brown,et al. Constant pressure ensembles in statistical mechanics , 1958 .
[49] Hong Qian,et al. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory. , 2016, Physical review. E.
[50] Rodney W. Johnson,et al. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy , 1980, IEEE Trans. Inf. Theory.
[51] D. Bedeaux,et al. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.
[52] Ludwig Boltzmann,et al. Lectures on Gas Theory , 1964 .
[53] G. B.. The Dynamical Theory of Gases , 1916, Nature.
[54] Michele Campisi,et al. Construction of microcanonical entropy on thermodynamic pillars. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[55] David J Schwab,et al. Zipf's law and criticality in multivariate data without fine-tuning. , 2013, Physical review letters.
[56] H. Qian,et al. Mathematical Formalism of Nonequilibrium Thermodynamics for Nonlinear Chemical Reaction Systems with General Rate Law , 2016, 1604.07115.
[57] C. Kittel,et al. Phase Transition of a Molecular Zipper , 1969 .
[58] J. Kirkwood. Statistical Mechanics of Fluid Mixtures , 1935 .
[59] R. A. Sack,et al. Pressure-dependent partition functions , 1959 .
[60] H. Haken. Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .
[61] Hong Qian,et al. Stochastic theory of nonequilibrium steady states and its applications. Part I , 2012 .
[62] A. Münster,et al. Zur Theorie der generalisierten Gesamtheiten , 1959 .
[63] John F. Nagle,et al. The One-Dimensional KDP Model in Statistical Mechanics , 1968 .
[64] K. Kaplan. H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd Edition). XI + 355 S., 152 Abb. Berlin—Heidelberg—New York 1978. Springer-Verlag. DM 66,00 , 1980 .
[65] T. D. Lee,et al. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .
[66] René Lefever,et al. Comment on the kinetic potential and the maxwell construction in non-equilibrium chemical phase transitions , 1977 .
[67] M. Levitt. The birth of computational structural biology , 2001, Nature Structural Biology.
[68] H. Haken. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices , 1983 .