Displacement convexity of Entropy and the distance cost Optimal Transportation

During the last decade Optimal Transport had a relevant role in the study of geometry of singular spaces that culminated with the Lott-Sturm-Villani theory. The latter is built on the characterisation of Ricci curvature lower bounds in terms of displacement convexity of certain entropy functionals along $W_{2}$-geodesics. Substantial recent advancements in the theory (localization paradigm and local-to-global property) have been obtained considering the different point of view of $L^1$-Optimal transport problems yielding a different curvature dimension $\mathsf{CD}^{1}(K,N)$ [8] formulated in terms of one-dimensional curvature properties of integral curves of Lipschitz maps. In this note we show that the two approaches produce the same curvature-dimension condition reconciling the two definitions. In particular we show that the $\mathsf{CD}^{1}(K,N)$ condition can be formulated in terms of displacement convexity along $W_{1}$-geodesics.

[1]  Martin Kell Transport maps, non-branching sets of geodesics and measure rigidity , 2017, 1704.05422.

[2]  A. Mondino,et al.  Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.

[3]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong C D ( K , ∞ ) -spaces , 2013 .

[4]  A. Mondino,et al.  New formulas for the Laplacian of distance functions and applications , 2018, Analysis & PDE.

[5]  Karl-Theodor Sturm,et al.  Local curvature-dimension condition implies measure-contraction property , 2011, 1112.4991.

[6]  Nicola Gigli,et al.  Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.

[7]  A. Mondino,et al.  Optimal maps in essentially non-branching spaces , 2016, 1609.00782.

[8]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[9]  Karl-Theodor Sturm,et al.  Non-branching geodesics and optimal maps in strong $$CD(K,\infty )$$CD(K,∞)-spaces , 2012, 1207.6754.

[10]  S. Bianchini,et al.  On the extremality, uniqueness and optimality of transference plans , 2009 .

[11]  C. Villani Topics in Optimal Transportation , 2003 .

[12]  F. Cavalletti,et al.  Decomposition of Geodesics in the Wasserstein Space and the Globalization Problem , 2014 .

[13]  R. McCann,et al.  Independence of synthetic curvature dimension conditions on transport distance exponent , 2020, 2007.10980.

[14]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[15]  Shashi M. Srivastava,et al.  A Course on Borel Sets , 1998, Graduate texts in mathematics.

[16]  Bo'az Klartag,et al.  Needle decompositions in Riemannian geometry , 2014, 1408.6322.

[17]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[18]  F. Cavalletti Decomposition of geodesics in the Wasserstein space and the globalization property , 2012, 1209.5909.

[19]  F. Cavalletti,et al.  Monge problem in metric measure spaces with Riemannian curvature-dimension condition , 2013, 1310.4036.

[20]  T. Rajala Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm , 2011, 1111.5526.

[21]  Shin-ichi Ohta On the measure contraction property of metric measure spaces , 2007 .

[22]  Emanuel Milman,et al.  The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.

[23]  L. Ambrosio,et al.  Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.

[24]  S. Bianchini,et al.  The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.

[25]  Martin Kell On interpolation and curvature via Wasserstein geodesics , 2013, 1311.5407.

[26]  C. Villani Optimal Transport: Old and New , 2008 .