Displacement convexity of Entropy and the distance cost Optimal Transportation
暂无分享,去创建一个
[1] Martin Kell. Transport maps, non-branching sets of geodesics and measure rigidity , 2017, 1704.05422.
[2] A. Mondino,et al. Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds , 2015, Inventiones mathematicae.
[3] Karl-Theodor Sturm,et al. Non-branching geodesics and optimal maps in strong C D ( K , ∞ ) -spaces , 2013 .
[4] A. Mondino,et al. New formulas for the Laplacian of distance functions and applications , 2018, Analysis & PDE.
[5] Karl-Theodor Sturm,et al. Local curvature-dimension condition implies measure-contraction property , 2011, 1112.4991.
[6] Nicola Gigli,et al. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below , 2011, 1106.2090.
[7] A. Mondino,et al. Optimal maps in essentially non-branching spaces , 2016, 1609.00782.
[8] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[9] Karl-Theodor Sturm,et al. Non-branching geodesics and optimal maps in strong $$CD(K,\infty )$$CD(K,∞)-spaces , 2012, 1207.6754.
[10] S. Bianchini,et al. On the extremality, uniqueness and optimality of transference plans , 2009 .
[11] C. Villani. Topics in Optimal Transportation , 2003 .
[12] F. Cavalletti,et al. Decomposition of Geodesics in the Wasserstein Space and the Globalization Problem , 2014 .
[13] R. McCann,et al. Independence of synthetic curvature dimension conditions on transport distance exponent , 2020, 2007.10980.
[14] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[15] Shashi M. Srivastava,et al. A Course on Borel Sets , 1998, Graduate texts in mathematics.
[16] Bo'az Klartag,et al. Needle decompositions in Riemannian geometry , 2014, 1408.6322.
[17] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .
[18] F. Cavalletti. Decomposition of geodesics in the Wasserstein space and the globalization property , 2012, 1209.5909.
[19] F. Cavalletti,et al. Monge problem in metric measure spaces with Riemannian curvature-dimension condition , 2013, 1310.4036.
[20] T. Rajala. Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm , 2011, 1111.5526.
[21] Shin-ichi Ohta. On the measure contraction property of metric measure spaces , 2007 .
[22] Emanuel Milman,et al. The globalization theorem for the Curvature-Dimension condition , 2016, Inventiones mathematicae.
[23] L. Ambrosio,et al. Metric measure spaces with Riemannian Ricci curvature bounded from below , 2011, 1109.0222.
[24] S. Bianchini,et al. The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.
[25] Martin Kell. On interpolation and curvature via Wasserstein geodesics , 2013, 1311.5407.
[26] C. Villani. Optimal Transport: Old and New , 2008 .