Non-redundant Spectral Dimensionality Reduction

Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks.

[1]  Tommy W. S. Chow,et al.  Trace Ratio Optimization-Based Semi-Supervised Nonlinear Dimensionality Reduction for Marginal Manifold Visualization , 2013, IEEE Transactions on Knowledge and Data Engineering.

[2]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[3]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[4]  Ahmed M. Elgammal,et al.  Inferring 3D body pose from silhouettes using activity manifold learning , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[6]  Shaoning Pang,et al.  Face membership authentication using SVM classification tree generated by membership-based LLE data partition , 2005, IEEE Trans. Neural Networks.

[7]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[8]  Daniel Thalmann,et al.  Planar arrangement of high-dimensional biomedical data sets by isomap coordinates , 2003, 16th IEEE Symposium Computer-Based Medical Systems, 2003. Proceedings..

[9]  Barbara Hammer,et al.  Data visualization by nonlinear dimensionality reduction , 2015, WIREs Data Mining Knowl. Discov..

[10]  Ross T. Whitaker,et al.  Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian Eigenmaps , 2007, ICML '07.

[11]  Richard Souvenir,et al.  Learning the viewpoint manifold for action recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[14]  Katsuhiko Sakaue,et al.  Head pose estimation by nonlinear manifold learning , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[15]  Alon Zakai,et al.  Manifold Learning: The Price of Normalization , 2008, J. Mach. Learn. Res..

[16]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[17]  R. Coifman,et al.  Non-linear independent component analysis with diffusion maps , 2008 .

[18]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[19]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[20]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[21]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[23]  张振跃,et al.  Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .

[24]  Rama Chellappa,et al.  Super-Resolution of Face Images Using Kernel PCA-Based Prior , 2007, IEEE Transactions on Multimedia.

[25]  Aapo Hyvärinen,et al.  Nonlinear independent component analysis: Existence and uniqueness results , 1999, Neural Networks.

[26]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[27]  Xin Geng,et al.  Supervised nonlinear dimensionality reduction for visualization and classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[28]  Marian Stewart Bartlett,et al.  Face recognition by independent component analysis , 2002, IEEE Trans. Neural Networks.

[29]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[30]  Mario Sznaier,et al.  Dynamic Appearance Modeling for Human Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  Robert Pless,et al.  On Manifold Structure of Cardiac MRI Data: Application to Segmentation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[34]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[35]  Qiang Wang,et al.  Learning object intrinsic structure for robust visual tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[36]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Carl-Fredrik Westin,et al.  Coloring of DT-MRI Fiber Traces Using Laplacian Eigenmaps , 2003, EUROCAST.

[38]  Robert Pless,et al.  Image Manifold Interpolation using Free-Form Deformations , 2006, 2006 International Conference on Image Processing.

[39]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[40]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[41]  Carmeline J. Dsilva,et al.  Parsimonious Representation of Nonlinear Dynamical Systems Through Manifold Learning: A Chemotaxis Case Study , 2015, 1505.06118.

[42]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[43]  Robert Pless,et al.  Image spaces and video trajectories: using Isomap to explore video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[44]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[45]  E. Nadaraya On Estimating Regression , 1964 .

[46]  Ahmed M. Elgammal,et al.  Modeling View and Posture Manifolds for Tracking , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[47]  Olga Sorkine-Hornung,et al.  A comparative study of image retargeting , 2010, ACM Trans. Graph..

[48]  Robert Pless,et al.  Simultaneous data volume reconstruction and pose estimation from slice samples , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Edward H. Adelson,et al.  Crisp Boundary Detection Using Pointwise Mutual Information , 2014, ECCV.

[50]  Nicolas Le Roux,et al.  Learning Eigenfunctions Links Spectral Embedding and Kernel PCA , 2004, Neural Computation.

[51]  Yun Fu,et al.  Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression , 2008, IEEE Transactions on Image Processing.

[52]  Hong Chang,et al.  Super-resolution through neighbor embedding , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..