In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes.

We report on a new analytical approach to intracellular chemical sensing that utilizes a surface-enhanced Raman spectroscopy (SERS)-enabled nanopipette. The probe is comprised of a glass capillary with a 100-500 nm tip coated with gold nanoparticles. The fixed geometry of the gold nanoparticles allows us to overcome the limitations of the traditional approach for intracellular SERS using metal colloids. We demonstrate that the SERS-enabled nanopipettes can be used for in situ analysis of living cell function in real time. In addition, SERS functionality of these probes allows tracking of their localization in a cell. The developed probes can also be applied for highly sensitive chemical analysis of nanoliter volumes of chemicals in a variety of environmental and analytical applications.

[1]  T. Vo‐Dinh,et al.  Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. , 2009, ACS nano.

[2]  Haim H. Bau,et al.  Cell electrophysiology with carbon nanopipettes. , 2009, ACS nano.

[3]  V. Kickhoefer,et al.  Targeting vault nanoparticles to specific cell surface receptors. , 2009, ACS nano.

[4]  P G Etchegoin,et al.  Guiding molecules with electrostatic forces in surface enhanced Raman spectroscopy. , 2008, ACS nano.

[5]  M. Kneussel,et al.  Microinjection into cultured hippocampal neurons: A straightforward approach for controlled cellular delivery of nucleic acids, peptides and antibodies , 2008, Journal of Neuroscience Methods.

[6]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[7]  Y. Gogotsi,et al.  SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles , 2008 .

[8]  Naomi J Halas,et al.  Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. , 2007, Angewandte Chemie.

[9]  George C Schatz,et al.  Using theory and computation to model nanoscale properties , 2007, Proceedings of the National Academy of Sciences.

[10]  Janina Kneipp,et al.  In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. , 2006, Nano letters.

[11]  M. Moskovits Surface-Enhanced Raman Spectroscopy: a Brief Perspective , 2006 .

[12]  M. Moskovits,et al.  Surface-enhanced raman scattering : physics and applications , 2006 .

[13]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[14]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[15]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[16]  Tena I. Katsaounis,et al.  Analyzing Multivariate Data , 2004, Technometrics.

[17]  S. Efrima,et al.  Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria , 2004, Applied spectroscopy.

[18]  M. Manfait,et al.  Selective analysis of antitumor drug interaction with living cancer cells as probed by surface-enhanced Raman spectroscopy , 2004, European Biophysics Journal.

[19]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[20]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[21]  K. Kregel,et al.  Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. , 2002, Journal of applied physiology.

[22]  Ling-ling Wu,et al.  SERS studies of self-assembled DNA monolayer - characterization of adsorption orientation of oligonucleotide probes and their hybridized helices on gold substrate , 2002 .

[23]  Michael S. Feld,et al.  Surface-Enhanced Raman Spectroscopy in Single Living Cells Using Gold Nanoparticles , 2002 .

[24]  Naomi J. Halas,et al.  Silver Nanoshells: Variations in Morphologies and Optical Properties , 2001 .

[25]  Duncan Graham,et al.  Surface‐Enhanced Resonance Raman Scattering as a Novel Method of DNA Discrimination , 2000 .

[26]  A. Mahadevan-Jansen,et al.  Near‐Infrared Raman Spectroscopy for In Vitro Detection of Cervical Precancers , 1998 .

[27]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[28]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[29]  T. Vo‐Dinh,et al.  Surface-enhanced Raman gene probe for HIV detection. , 1998, Analytical chemistry.

[30]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[31]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[32]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[33]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[34]  N. McCarty,et al.  Calcium signaling in cell volume regulation. , 1992, Physiological reviews.

[35]  M. Jennings,et al.  Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. , 1990, The American journal of physiology.

[36]  J. Greve,et al.  Studying single living cells and chromosomes by confocal Raman microspectroscopy , 1990, Nature.

[37]  H. Metiu Surface enhanced spectroscopy , 1984 .