Steering the Eigenvalues of the Density Operator in Hamiltonian-Controlled Quantum Lindblad Systems

In this paper, we demonstrate that the dynamics of an <inline-formula><tex-math notation="LaTeX">$n$</tex-math> </inline-formula>-dimensional Lindblad control system can be separated into its inter- and intraorbit dynamics when there is fast controllability. This can be viewed as a control system on the simplex of density operator spectra, where projectors representing the eigenspaces are viewed as control variables. The local controllability properties of this control system can be analyzed when the control set of projectors is limited to a finite subset. In particular, there is a natural finite subset of <inline-formula><tex-math notation="LaTeX">$n!$</tex-math></inline-formula> projector tuples that are effective for low-purity orbits.

[1]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[2]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[3]  Sophie Shermer Stabilizing open quantum systems by Markovian reservoir engineering , 2010 .

[4]  Claudio Altafini,et al.  Controllability and simultaneous controllability of isospectral bilinear control systems on complex flag manifolds , 2009, Syst. Control. Lett..

[5]  Tosio Kato Perturbation theory for linear operators , 1966 .

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory &amp; Applications.

[8]  W. Marsden I and J , 2012 .

[9]  D. Sugny,et al.  Laser control for the optimal evolution of pure quantum states (15 pages) , 2005 .

[10]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[11]  S. Schirmer,et al.  Orbits of quantum states and geometry of Bloch vectors for N-level systems , 2003, quant-ph/0308004.

[12]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[13]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[14]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[15]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .

[16]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[17]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[18]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[19]  Lorenza Viola,et al.  Engineering quantum dynamics , 2001 .

[20]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[21]  David J. Tannor,et al.  On the interplay of control fields and spontaneous emission in laser cooling , 1999 .

[22]  Eduardo D. Sontag,et al.  Mathematical Control Theory Second Edition , 1998 .

[23]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[24]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[25]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[26]  Anthony Bloch,et al.  Decoherence Control and Purification of Two-dimensional Quantum Density Matrices under Lindblad Dissipation , 2012, 1201.0399.

[27]  David J. Tannor,et al.  Optimal control of quantum dissipative dynamics: Analytic solution for cooling the three-level Λ system , 2004 .

[28]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[29]  Roger W. Brockett,et al.  Finite Controllability of Infinite-Dimensional Quantum Systems , 2010, IEEE Transactions on Automatic Control.

[30]  Paul Brumer,et al.  Laser control of product quantum state populations in unimolecular reactions , 1986 .

[31]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[32]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[33]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.