On a proper way to select population failure distribution and a stochastic optimization method in parameter estimation

It is widely accepted that the Weibull distribution plays an important role in reliability applications. The reliability of a product or a system is the probability that the product or the system will still function for a specified time period when operating under some confined conditions. Parameter estimation for the three parameter Weibull distribution has been studied by many researchers in the past. Maximum likelihood has traditionally been the main method of estimation for Weibull parameters along with other recently proposed hybrids of optimization methods. In this paper, we use a stochastic optimization method called the Markov Chain Monte Carlo (MCMC) to carry out the estimation. The method is extremely flexible and inference for any quantity of interest is easily obtained.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  R. J. Croucher,et al.  Reliability and life testing , 1986 .

[3]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[4]  Hideo Hirose,et al.  Bias correction for the maximum likelihood estimates in the two-parameter Weibull distribution , 1999 .

[5]  W. R. Blischke On nonregular estimation.ii.estimation of the location parameter of the gamma amd we i bull distributions , 1974 .

[6]  Albert H. Moore,et al.  A Modified Kolmogorov-Smirnov Test for Weibull Distributions with Unknown Location and Scale Parameters , 1983, IEEE Transactions on Reliability.

[7]  Charles E. Antle,et al.  Estimation of Parameters in the Weibull Distribution , 1967 .

[8]  Alan J. Gross,et al.  Monte Carlo Comparisons of Parameter Estimators of the 2-parameter Weibull Distribution , 1977, IEEE Transactions on Reliability.

[9]  A. Clifford Cohen,et al.  Parameter estimation in reliability and life span models , 1988 .

[10]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .

[11]  Pierre Hansen,et al.  Finding maximum likelihood estimators for the three-parameter Weibull distribution , 1994, J. Glob. Optim..

[12]  Bradford F. Kimball,et al.  On the Choice of Plotting Positions on Probability Paper , 1960 .

[13]  Franklin A. Graybill,et al.  Introduction to The theory , 1974 .

[14]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[15]  Calyampudi R. Rao,et al.  Linear statistical inference and its applications , 1965 .

[16]  Jwo Pan,et al.  A new method for selection of population distribution and parameter estimation , 1998 .

[17]  J. Kyparisis,et al.  A review of maximum likelihood estimation methods for the three-parameter weibull distribution , 1986 .

[18]  Charles E. Antle,et al.  Estimation of Parameters in the Weibdl Distribution , 1967 .

[19]  Chris P. Tsokos,et al.  Estimation of the three parameter Weibull probability distribution , 1995 .

[20]  Gang Li Nonparametric likelihood ratio goodness-of-fit tests for survival data , 2003 .

[21]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Hideo Hirose,et al.  Percentile point estimation in the three parameter Weibull distribution by the extended maximum likelihood estimate , 1991 .

[24]  Dimitri Kececioglu,et al.  Reliability and Life Testing Handbook , 1992 .

[25]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[26]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[27]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .