Interactive visual exploration of association rules with rule-focusing methodology

On account of the enormous amounts of rules that can be produced by data mining algorithms, knowledge post-processing is a difficult stage in an association rule discovery process. In order to find relevant knowledge for decision making, the user (a decision maker specialized in the data studied) needs to rummage through the rules. To assist him/her in this task, we here propose the rule-focusing methodology, an interactive methodology for the visual post-processing of association rules. It allows the user to explore large sets of rules freely by focusing his/her attention on limited subsets. This new approach relies on rule interestingness measures, on a visual representation, and on interactive navigation among the rules. We have implemented the rule-focusing methodology in a prototype system called ARVis. It exploits the user's focus to guide the generation of the rules by means of a specific constraint-based rule-mining algorithm.

[1]  Adam C. Powell 3-D or not 3-D , 2002 .

[2]  I. Spence Visual psychophysics of simple graphical elements. , 1990, Journal of experimental psychology. Human perception and performance.

[3]  Abraham Silberschatz,et al.  What Makes Patterns Interesting in Knowledge Discovery Systems , 1996, IEEE Trans. Knowl. Data Eng..

[4]  Jean-François Boulicaut,et al.  Optimization of association rule mining queries , 2002, Intell. Data Anal..

[5]  Jaideep Srivastava,et al.  Selecting the right interestingness measure for association patterns , 2002, KDD.

[6]  O. Svenson,et al.  Analysing and aiding decision processes , 1983 .

[7]  Wynne Hsu,et al.  Analyzing the Subjective Interestingness of Association Rules , 2000, IEEE Intell. Syst..

[8]  Ramakrishnan Srikant,et al.  The Quest Data Mining System , 1996, KDD.

[9]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[10]  C. Melody Carswell,et al.  Graphing in depth: Perspectives on the use of three-dimensional graphs to represent lower-dimensional data. , 1991 .

[11]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[12]  Markus H. Gross,et al.  Visualization of directed associations in e-commerce transaction data , 2001, VisSym.

[13]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[14]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[15]  J. Loevinger A systematic approach to the construction and evaluation of tests of ability. , 1947 .

[16]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[17]  Régis Gras,et al.  Using information-theoretic measures to assess association rule interestingness , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[18]  Hamparsum Bozdogan,et al.  Statistical Data Mining and Knowledge Discovery , 2004 .

[19]  Régis Gras,et al.  Implication Intensity: From the Basic Statistical Definition to the Entropic Version , 2003 .

[20]  Chaomei Chen,et al.  Information Visualization: Beyond the Horizon , 2006 .

[21]  Fabrice Guillet,et al.  A User-Driven Process for Mining Association Rules , 2000, PKDD.

[22]  Rajeev Motwani,et al.  Beyond Market Baskets: Generalizing Association Rules to Dependence Rules , 1998, Data Mining and Knowledge Discovery.

[23]  Colin Ware,et al.  Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.

[24]  Heike Hofmann,et al.  Visual Comparison of Association Rules , 2001, Comput. Stat..

[25]  Ulrich Güntzer,et al.  Is pushing constraints deeply into the mining algorithms really what we want?: an alternative approach for association rule mining , 2002, SKDD.

[26]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[27]  John H. Holland,et al.  Induction: Processes of Inference, Learning, and Discovery , 1987, IEEE Expert.

[28]  Sushil Jajodia,et al.  Proceedings of the 1993 ACM SIGMOD international conference on Management of data , 1993, SIGMOD 1993.

[29]  Jean-François Boulicaut,et al.  A Comparison between Query Languages for the Extraction of Association Rules , 2002, DaWaK.

[30]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[31]  Andy Cockburn,et al.  3D or not 3D?: evaluating the effect of the third dimension in a document management system , 2001, CHI.

[32]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[33]  Ronald J. Brachman,et al.  The Process of Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[34]  Yiming Ma,et al.  Web for data mining: organizing and interpreting the discovered rules using the Web , 2000, SKDD.

[35]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[36]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[37]  Régis Gras,et al.  L'implication statistique : nouvelle méthode exploratoire de données : applications à la didactique , 1996 .

[38]  K. Andrews,et al.  Case study. Visualising cyberspace: information visualisation in the Harmony Internet browser , 1995, Proceedings of Visualization 1995 Conference.

[39]  John C. Baird,et al.  Psychophysical analysis of visual space , 1974 .

[40]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[41]  Alessandro Campi,et al.  Mining Association Rules from XML Data , 2002, DaWaK.

[42]  MotwaniRajeev,et al.  Beyond market baskets , 1997 .

[43]  Jean-Pierre Barthélemy,et al.  A model of selection by aspects , 1992 .

[44]  Download Book,et al.  Information Visualization in Data Mining and Knowledge Discovery , 2001 .

[45]  Inderpal Bhandari,et al.  Attribute focusing: machine-assisted knowledge discovery applied to software production process control , 1993 .

[46]  Heike Hofmann,et al.  Visualizing association rules with interactive mosaic plots , 2000, KDD '00.

[47]  Yasuhiko Morimoto,et al.  Data Mining with optimized two-dimensional association rules , 2001, TODS.

[48]  Hongjun Lu,et al.  Exception Rule Mining with a Relative Interestingness Measure , 2000, PAKDD.

[49]  Xiaohua Hu,et al.  A Visualization Model of Interactive Knowledge Discovery Systems and Its Implementations , 2003, Inf. Vis..

[50]  Wei Wang,et al.  DMQL: A Data Mining Query Language for Relational Databases , 2007 .

[51]  Mark Bailey,et al.  The Grammar of Graphics , 2007, Technometrics.

[52]  Hussein H. Aly,et al.  Mining association rules , 2001, CATA.

[53]  Wynne Hsu,et al.  Multi-level organization and summarization of the discovered rules , 2000, KDD '00.

[54]  Jaideep Srivastava,et al.  Selecting the right objective measure for association analysis , 2004, Inf. Syst..

[55]  Roberto J. Bayardo,et al.  Mining the most interesting rules , 1999, KDD '99.

[56]  Henry Montgomery,et al.  Decision Rules and the Search for a Dominance Structure: Towards a Process Model of Decision Making* , 1983 .

[57]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[58]  Osmar R. Zaïane,et al.  Immersed Visual Data Mining: Walking the Walk , 2001, BNCOD.

[59]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[60]  Bart Goethals,et al.  On Supporting Interactive Association Rule Mining , 2000, DaWaK.

[61]  Gediminas Adomavicius,et al.  Handling very large numbers of association rules in the analysis of microarray data , 2002, KDD.

[62]  J. van Leeuwen,et al.  Intelligent Data Engineering and Automated Learning , 2003, Lecture Notes in Computer Science.

[63]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[64]  Antony Unwin,et al.  The TwoKey Plot for Multiple Association Rules Control , 2001, PKDD.

[65]  John F. Roddick,et al.  Visualisation of Temporal Interval Association Rules , 2000, IDEAL.

[66]  Charu C. Aggarwal,et al.  Towards effective and interpretable data mining by visual interaction , 2002, SKDD.

[67]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[68]  Heikki Mannila,et al.  Fast Discovery of Association Rules , 1996, Advances in Knowledge Discovery and Data Mining.

[69]  Ben Shneiderman Inventing discovery tools: combining information visualization with data mining? , 2002, Inf. Vis..

[70]  Balaji Padmanabhan,et al.  Unexpectedness as a Measure of Interestingness in Knowledge Discovery , 1999, Decis. Support Syst..

[71]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[72]  Dino Pedreschi,et al.  Efficient breadth-first mining of frequent pattern with monotone constraints , 2005, Knowledge and Information Systems.

[73]  Mary Czerwinski,et al.  Data mountain: using spatial memory for document management , 1998, UIST '98.

[74]  H. Simon,et al.  Models of Thought , 1979 .

[75]  Rajeev Motwani,et al.  Dynamic itemset counting and implication rules for market basket data , 1997, SIGMOD '97.

[76]  Ben Shneiderman,et al.  Inventing Discovery Tools: Combining Information Visualization with Data Mining1 , 2001, Inf. Vis..

[77]  Régis Gras,et al.  Assessing rule interestingness with a probabilistic measure of deviation from equilibrium , 2005 .

[78]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[79]  John F. Roddick,et al.  Experiences in Building a Tool for Navigating Association Rule Result Sets , 2004, ACSW.

[80]  Ron Kohavi,et al.  MineSet: An Integrated System for Data Mining , 1997, KDD.

[81]  Tomasz Imielinski,et al.  MSQL: A Query Language for Database Mining , 1999, Data Mining and Knowledge Discovery.

[82]  Nick Cercone,et al.  CViz: An Interactive Visualization System for Rule Induction , 2000, Canadian Conference on AI.

[83]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[84]  Alex Alves Freitas,et al.  On Objective Measures of Rule Surprisingness , 1998, PKDD.

[85]  Ke Wang,et al.  Visually Aided Exploration of Interesting Association Rules , 1999, PAKDD.

[86]  Fabrice Guillet,et al.  Improving the Discovery of Association Rules with Intensity of Implication , 1998, PKDD.

[87]  Alexander Tuzhilin,et al.  User-Assisted Knowledge Discovery: How Much Should the User Be Involved , 1996 .

[88]  Norberto F. Ezquerra,et al.  Constraining and summarizing association rules in medical data , 2006, Knowledge and Information Systems.

[89]  Giuseppe Psaila,et al.  An Extension to SQL for Mining Association Rules , 1998, Data Mining and Knowledge Discovery.

[90]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[91]  Gang Liu,et al.  DBMiner: a system for data mining in relational databases and data warehouses , 1997, CASCON.

[92]  Laks V. S. Lakshmanan,et al.  Efficient mining of constrained correlated sets , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[93]  Einoshin Suzuki,et al.  Undirected Discovery of Interesting Exception Rules , 2002, Int. J. Pattern Recognit. Artif. Intell..

[94]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .