Surface Explosion Chemistry of Malic Acid on Cu(110)

[1]  C. Roth,et al.  Chiral reconstruction of a metal surface by adsorption of racemic malic acid. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  C. Roth,et al.  Two-Dimensional Self-Assembly of Chiral Malic Acid on Cu(110)† , 2011 .

[3]  C. Roth,et al.  Pasteur's quasiracemates in 2D: chiral conflict between structurally different enantiomers induces single-handed enantiomorphism. , 2010, Chemical communications.

[4]  Leo Merz,et al.  Unification of the matrix notation in molecular surface science , 2010 .

[5]  A. Jansen,et al.  Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. , 2009, Nature chemistry.

[6]  R. Raval Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. , 2009, Chemical Society reviews.

[7]  R. Fasel,et al.  Coverage and Enantiomeric Excess Dependent Enantiomorphism in Two-Dimensional Molecular Crystals† , 2008 .

[8]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[9]  A. Seitsonen,et al.  Buckybowls on metal surfaces: symmetry mismatch and enantiomorphism of corannulene on Cu110. , 2007, Angewandte Chemie.

[10]  A. Baiker,et al.  Asymmetric catalysis at chiral metal surfaces. , 2007, Chemical reviews.

[11]  D. Ferri,et al.  Adsorption mode of the chiral modifier cinchonidine on Au(1 1 1) , 2007 .

[12]  K. Ernst,et al.  Stereoisomeric influence on 2D lattice structure: achiral meso‐tartaric acid versus chiral tartaric acid , 2006 .

[13]  R. Fasel,et al.  Amplification of chirality in two-dimensional enantiomorphous lattices , 2006, Nature.

[14]  K. Ernst Supramolecular surface chirality , 2006 .

[15]  R. Fasel,et al.  Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110). , 2005, Chemistry.

[16]  K. Ernst,et al.  Homochirality in monolayers of achiral meso tartaric acid , 2005 .

[17]  K. Ernst,et al.  Induction of homochirality in achiral enantiomorphous monolayers. , 2004, Journal of the American Chemical Society.

[18]  R. Fasel,et al.  Chiral recognition in surface explosion. , 2004, Journal of the American Chemical Society.

[19]  Ilkeun Lee,et al.  In situ Characterization of the Adsorption of Cinchona Chiral Modifiers on Platinum Surfaces , 2004 .

[20]  A. Jansen,et al.  Formation of chiral domains for tartaric acid on Cu(110): A combined dft and kinetic Monte Carlo study , 2004 .

[21]  R. Fasel,et al.  Determination of the absolute chirality of adsorbed molecules. , 2004, Angewandte Chemie.

[22]  V. Humblot,et al.  Local and Global Chirality at Surfaces: Succinic Acid versus Tartaric Acid on Cu(110) , 2004 .

[23]  M. Bowker,et al.  Acetic acid adsorption and decomposition on Pd(1 1 0) , 2004 .

[24]  T. Jones,et al.  Direct STM evidence of a surface interaction between chiral modifier and pro-chiral reagent: Methylacetoacetate on R,R-tartaric acid modified Ni{111} , 2002 .

[25]  T. Jones,et al.  A RAIRS, STM and TPD study of the Ni{111}/R,R-tartaric acid system: Modelling the chiral modification of Ni nanoparticles , 2002 .

[26]  Rasmita Raval,et al.  From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). , 2002, Journal of the American Chemical Society.

[27]  P. Sautet,et al.  Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: a periodic density functional theory study. , 2001, Journal of the American Chemical Society.

[28]  R. Raval,et al.  Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules , 2000, Nature.

[29]  R. Raval,et al.  Creating Chiral Surfaces for Enantioselective Heterogeneous Catalysis: R,R-Tartaric Acid on Cu(110) , 1999 .

[30]  K. Ernst,et al.  Adsorption of carbon dioxide on Cu(110) and on hydrogen and oxygen covered Cu(110) surfaces , 1999 .

[31]  A. Baiker Progress in asymmetric heterogeneous catalysis: Design of novel chirally modified platinum metal catalysts , 1997 .

[32]  M. Keane Interaction of Optically Active Tartaric Acid with a Nickel−Silica Catalyst: Role of Both the Modification and Reaction Media in Determining Enantioselectivity , 1997 .

[33]  C. Qing Industrial Synthesis of Optically Active Compounds , 1994 .

[34]  M. Bowker,et al.  From surface science to catalysis: Surface “explosions” observed on Rh crystals and supported catalysts , 1993 .

[35]  M. Bowker,et al.  Acetate formation, stabilisation and surface explosion on Rh(111) , 1993 .

[36]  M. Bowker,et al.  Adsorption and autocatalytic decomposition of acetic acid on Pd(110) , 1993 .

[37]  H. Blaser Enantioselective synthesis using chiral heterogeneous catalysts. , 1991 .

[38]  R. Sheldon Industrial synthesis of optically active compounds , 1990 .

[39]  Y. Izumi Modified Raney nickel (MRNi) catalyst: heterogeneous enantio-differentiating (asymmetric) catalyst , 1983 .

[40]  J. Falconer,et al.  The autocatalytic decomposition of acetic acid on Ni(110) , 1976 .

[41]  J. Falconer,et al.  The kinetics and mechanism of the autocatalytic decomposition of HCOOH on clean Ni(110) , 1974 .

[42]  J. Falconer,et al.  Decomposition of formic acid on Ni(110): I. Flash decomposition from the clean surface and flash desorption of reaction products , 1973 .