A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye

[1]  K Mosbach,et al.  Assay system for the herbicide 2,4-dichlorophenoxyacetic Acid using a molecularly imprinted polymer as an artificial recognition element. , 1998, Analytical chemistry.

[2]  Crown ethers as a tool for the preparation of molecularly imprinted polymers , 1998, Journal of molecular recognition : JMR.

[3]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook: Second Edition. , 1999 .

[4]  K. Mosbach,et al.  Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays , 1999 .

[5]  G. Anderson,et al.  Multi-analyte interrogation using the fiber optic biosensor. , 2000, Biosensors & bioelectronics.

[6]  B. Danielsson,et al.  Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody. , 2001, Analytical chemistry.

[7]  María Marazuela,et al.  Fiber-optic biosensors – an overview , 2002, Analytical and bioanalytical chemistry.

[8]  D. Lim,et al.  Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors , 2003, Proc. IEEE.

[9]  L. Nie,et al.  Influence of cross-linkers’ amount on the performance of the piezoelectric sensor modified with molecularly imprinted polymers , 2005 .

[10]  R. Narayanaswarny,et al.  Optical sensors , 2005, 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research.

[11]  F. Ligler,et al.  Evanescent wave fluorescence biosensors. , 2005, Biosensors & bioelectronics.

[12]  John O'Mahony,et al.  Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003 , 2006, Journal of molecular recognition : JMR.

[13]  V. Canalli,et al.  Degradation of pararosaniline (C.I. Basic Red 9 monohydrochloride) dye by ozonation and sonolysis , 2006 .

[14]  Jules B van Lier,et al.  Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. , 2007, Bioresource technology.

[15]  Guillermo Orellana and David Haigh New Trends in Fiber-Optic Chemical and Biological Sensors , 2008 .

[16]  R. Narayanaswamy Absorbance Spectroscopy for Chemical Sensors , 2008 .

[17]  Xiu-qing Yang,et al.  Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase , 2009 .

[18]  K. Haupt,et al.  Molecularly imprinted polymers: synthetic receptors in bioanalysis , 2010, Analytical and bioanalytical chemistry.

[19]  A. Bakhrouf,et al.  Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. , 2010 .

[20]  James Noble,et al.  The rational development of molecularly imprinted polymer-based sensors for protein detection. , 2011, Chemical Society reviews.

[21]  Xiu-qing Yang,et al.  Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. , 2011, Bioresource technology.

[22]  Zaharia Carmen,et al.  Textile Organic Dyes – Characteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents – A Critical Overview , 2012 .

[23]  T. Puzyn,et al.  Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update , 2012 .

[24]  O. Soppera,et al.  A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ. , 2013, Angewandte Chemie.

[25]  Knut Rurack,et al.  Fluorescent sensory microparticles that "light-up" consisting of a silica core and a molecularly imprinted polymer (MIP) shell. , 2013, Angewandte Chemie.

[26]  O. Wolfbeis,et al.  Fiber-optic chemical sensors and biosensors (2008-2012). , 2013, Analytical chemistry.

[27]  G. Mustafa,et al.  MIP sensors on the way to biotech applications: Targeting selectivity , 2013 .

[28]  Karsten Haupt,et al.  A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. , 2015, Biosensors & bioelectronics.