Degree of crosslinking in β-cyclodextrin-based nanosponges and their effect on piperine encapsulation.

[1]  M. Shariati,et al.  Phytochemical and pharmacological attributes of piperine: A bioactive ingredient of black pepper. , 2019, European journal of medicinal chemistry.

[2]  F. Acevedo,et al.  Carbonate-β-Cyclodextrin-Based Nanosponge as a Nanoencapsulation System for Piperine: Physicochemical Characterization , 2019, Journal of Soil Science and Plant Nutrition.

[3]  F. Acevedo,et al.  Inclusion of piperine in β-cyclodextrin complexes improves their bioaccessibility and in vitro antioxidant capacity , 2019, Food Hydrocolloids.

[4]  F. Acevedo,et al.  Gallic acid loaded PEO‐core/zein‐shell nanofibers for chemopreventive action on gallbladder cancer cells , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[5]  R. Pushpalatha,et al.  Cross-linked, cyclodextrin-based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity , 2018, Journal of Drug Delivery Science and Technology.

[6]  I. El-Sherbiny,et al.  Development of core‐shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line , 2018, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[7]  J. Simal-Gándara,et al.  Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin , 2018 .

[8]  Y. Inoue,et al.  Characterization of the Dissolution Behavior of Piperine/Cyclodextrins Inclusion Complexes , 2017, AAPS PharmSciTech.

[9]  M. Zanetti,et al.  Evolution of Cyclodextrin Nanosponges. , 2017, International journal of pharmaceutics.

[10]  P. Bhattacharjee,et al.  Nanoliposomal encapsulates of piperine-rich black pepper extract obtained by enzyme-assisted supercritical carbon dioxide extraction , 2017 .

[11]  J. Simal-Gándara,et al.  Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin , 2017 .

[12]  J. Simal-Gándara,et al.  Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: physiochemical characterization and evaluation of bio-efficacies , 2017 .

[13]  K. Chatterjee,et al.  Engineering a Piperine Eluting Nanofibrous Patch for Cancer Treatment. , 2016, ACS biomaterials science & engineering.

[14]  Y. Inoue,et al.  Changes in the Physicochemical Properties of Piperine/β-Cyclodextrin due to the Formation of Inclusion Complexes , 2016, International journal of medicinal chemistry.

[15]  S. Nimmagadda,et al.  Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges , 2016 .

[16]  D. Pentak In vitro spectroscopic study of piperine-encapsulated nanosize liposomes , 2015, European Biophysics Journal.

[17]  M. Rao,et al.  Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution , 2015, Drug development and industrial pharmacy.

[18]  A. Verma,et al.  Nanosponges: a potential nanocarrier for novel drug delivery-a review , 2014 .

[19]  Subramanian Selvamuthukumar,et al.  Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects , 2014, Journal of Materials Science.

[20]  Noor,et al.  Isolation and characterization of piperine from the fruits of black pepper (Piper nigrum) , 2014 .

[21]  Y. Gargouri,et al.  Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum , 2013 .

[22]  F. Trotta,et al.  In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan , 2013, Journal of Inclusion Phenomena and Macrocyclic Chemistry.

[23]  L. Ellis,et al.  Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[24]  S. Senthila,et al.  Isolation, identification and antimycobacterial evaluation of piperine from Piper longum , 2012 .

[25]  L. Wilson,et al.  Surface area and pore structure properties of urethane-based copolymers containing β-cyclodextrin. , 2011, Journal of colloid and interface science.

[26]  J. Simal-Gándara,et al.  Factors controlling flavors binding constants to cyclodextrins and their applications in foods , 2010 .

[27]  M. Trotta,et al.  Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[28]  F. Salaün,et al.  Curcumin-Loaded Nanocapsules: Formulation and Influence of the Nanoencapsulation Processes Variables on the Physico-Chemical Characteristics of the Particles , 2009 .

[29]  Carmen González-Barreiro,et al.  A review on the use of cyclodextrins in foods , 2009 .

[30]  E. Norkus,et al.  Deprotonation of beta-cyclodextrin in alkaline solutions. , 2009, Carbohydrate research.

[31]  H. Ritter,et al.  Polymer Synthesis and Modification by Use of Microwaves , 2008 .

[32]  Rajeswari Challa,et al.  Cyclodextrins in drug delivery: An updated review , 2005, AAPS PharmSciTech.

[33]  Ulrich S. Schubert,et al.  Microwave‐Assisted Polymer Synthesis: Recent Developments in a Rapidly Expanding Field of Research , 2007 .

[34]  Ulrich S. Schubert,et al.  Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives , 2004 .

[35]  B. Dariusz,et al.  MICROWAVE ASSISTED SYNTHESIS, CROSS LINKING AND PROCESSING OF POLYMERIC MATERIALS , 2003 .

[36]  F. Trotta,et al.  ACYCLIC CARBONATES OF BETA -CYCLODEXTRIN , 1993 .