Visual analytics for spatiotemporal events

Crimes, forest fires, accidents, infectious diseases, or human interactions with mobile devices (e.g., tweets) are being logged as spatiotemporal events. For each event, its geographic location, time and related attributes are known with high levels of detail (LoDs). The LoD plays a crucial role when analyzing data, as it can highlight useful patterns or insights and enhance the user’ perception of phenomena. For this reason, modeling phenomena at different LoDs is needed to increase the analytical value of the data, as there is no exclusive LOD at which the data can be analyzed. Current practices work mainly on a single LoD of the phenomena, driven by the analysts’ perception, ignoring that identifying the suitable LoDs is a key issue for pointing relevant patterns. This article presents a Visual Analytics approach called VAST, that allows users to simultaneously inspect a phenomenon at different LoDs, helping them to see in what LoDs do interesting patterns emerge, or in what LoDs the perception of the phenomenon is different. In this way, the analysis of vast amounts of spatiotemporal events is assisted, guiding the user in this process. The use of several synthetic and real datasets supported the evaluation and validation of VAST, suggesting LoDs with different interesting spatiotemporal patterns and pointing the type of expected patterns.

[1]  Jizhou Sun,et al.  A visual analytics approach for deterioration risk analysis of ancient frescoes , 2016, J. Vis..

[2]  Hans-Jörg Schulz,et al.  The Great Wall of Space-Time , 2012, VMV.

[3]  Thomas Ertl,et al.  Thematic Patterns in Georeferenced Tweets through Space-Time Visual Analytics , 2013, Computing in Science & Engineering.

[4]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[5]  Chris Weaver,et al.  Cross-Filtered Views for Multidimensional Visual Analysis , 2010, IEEE Transactions on Visualization and Computer Graphics.

[6]  Theresa-Marie Rhyne,et al.  Data Vases: 2D and 3D Plots for Visualizing Multiple Time Series , 2009, ISVC.

[7]  Kyriakos Mouratidis,et al.  Discovering historic traffic-tolerant paths in road networks , 2016, GeoInformatica.

[8]  Maribel Yasmina Santos,et al.  Aggregating Spatio-temporal Phenomena at Multiple Levels of Detail , 2015, AGILE Conf..

[9]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[10]  Maribel Yasmina Santos,et al.  A granularity theory for modelling spatio-temporal phenomena at multiple levels of detail , 2015, Int. J. Bus. Intell. Data Min..

[11]  Donna Peuquet,et al.  PerSE: visual analytics for calendar related spatiotemporal periodicity detection and analysis , 2016, GeoInformatica.

[12]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[13]  David S. Ebert,et al.  Visual Analytics Law Enforcement Toolkit , 2010, 2010 IEEE International Conference on Technologies for Homeland Security (HST).

[14]  Xiao Zhang,et al.  SensePlace2: GeoTwitter analytics support for situational awareness , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[15]  Elsevier Sdol International Journal of Human-Computer Studies , 2009 .

[16]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[17]  Stan Openshaw,et al.  Modifiable Areal Unit Problem , 2008, Encyclopedia of GIS.

[18]  Cynthia A. Brewer,et al.  Evaluating data stability in aggregation structures across spatial scales: revisiting the modifiable areal unit problem , 2017 .

[19]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[21]  Gennady L. Andrienko,et al.  Interactive visual tools to explore spatio-temporal variation , 2004, AVI.

[22]  Rui Alves,et al.  Gisplay- Extensible Web API for Thematic Maps with WebGL , 2017, ICCSA.

[23]  Slava Kisilevich,et al.  A conceptual framework and taxonomy of techniques for analyzing movement , 2011, J. Vis. Lang. Comput..

[24]  Anthony C. Robinson,et al.  Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data , 2017 .

[25]  Gang Wang,et al.  Crime data mining: a general framework and some examples , 2004, Computer.

[26]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[27]  Bin Jiang,et al.  Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges , 2015, ArXiv.

[28]  William Wright,et al.  Geo time information visualization , 2005 .

[29]  Jesper Møller,et al.  Aspects of second‐order analysis of structured inhomogeneous spatio‐temporal point processes , 2012 .

[30]  P. Rheingans,et al.  Temporal visualization of planning polygons for efficient partitioning of geo-spatial data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[31]  Spencer Chainey,et al.  GIS in law enforcement: implementation issues and case studies , 2004 .

[32]  Rui Zhang,et al.  HomeSeeker: A visual analytics system of real estate data , 2018, J. Vis. Lang. Comput..

[33]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Donna Peuquet,et al.  An Evaluation of a Visual Analytics Prototype for Calendar-Related Spatiotemporal Periodicity Detection and Analysis , 2017, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[35]  Shaowen Wang,et al.  Mapping spatiotemporal patterns of events using social media: a case study of influenza trends , 2018, Int. J. Geogr. Inf. Sci..

[36]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[37]  Gennady L. Andrienko,et al.  Interactive analysis of event data using space-time cube , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[38]  Peter J. Diggle,et al.  stpp: An R Package for Plotting, Simulating and Analyzing Spatio-Temporal Point Patterns , 2013 .

[39]  Jin Chen,et al.  A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP) , 2006, IEEE Transactions on Visualization and Computer Graphics.

[40]  David S. Ebert,et al.  Spatiotemporal social media analytics for abnormal event detection and examination using seasonal-trend decomposition , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[41]  Yvan Bédard,et al.  Spatial Online Analytical Processing (SOLAP): Concepts, Architectures, and Solutions from a Geomatics Engineering Perspective , 2007 .

[42]  Marc G. Genton,et al.  Modeling spatio-temporal wildfire ignition point patterns , 2009, Environmental and Ecological Statistics.

[43]  Ryan Hafen,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[44]  Daniel A. Keim,et al.  Visual analytics for the big data era — A comparative review of state-of-the-art commercial systems , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[45]  Heidrun Schumann,et al.  Visualizing abstract data on maps , 2004 .

[46]  Heidrun Schumann,et al.  Visualization of attributed hierarchical structures in a spatiotemporal context , 2010, Int. J. Geogr. Inf. Sci..

[47]  David Ebdon,et al.  Statistics in geography , 1986 .

[48]  Matej Cebecauer,et al.  Using OpenStreetMap to improve population grids in Europe , 2017 .

[49]  John F. Roddick,et al.  A bibliography of temporal, spatial and spatio-temporal data mining research , 1999, SKDD.

[50]  Ping Chen,et al.  Understanding the spatial distribution of crime based on its related variables using geospatial discriminative patterns , 2013, Comput. Environ. Urban Syst..

[51]  Maribel Yasmina Santos,et al.  Enhancing Exploratory Analysis by Summarizing Spatiotemporal Events Across Multiple Levels of Detail , 2016, AGILE Conf..

[52]  William Wright,et al.  GeoTime Information Visualization , 2004, IEEE Symposium on Information Visualization.

[53]  Edith Gabriel,et al.  Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes , 2013, Methodology and Computing in Applied Probability.

[54]  Shashi Shekhar,et al.  Spatiotemporal Data Mining: A Computational Perspective , 2015, ISPRS Int. J. Geo Inf..

[55]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[56]  Jason Dykes,et al.  Visualizing Multiple Variables Across Scale and Geography , 2016, IEEE Transactions on Visualization and Computer Graphics.

[57]  Maribel Yasmina Santos,et al.  Geospatial Data in a Changing World: Selected papers of the 19th AGILE Conference on Geographic Information Science , 2016, AGILE Conf..

[58]  Witold Pedrycz,et al.  Granular Computing: Perspectives and Challenges , 2013, IEEE Transactions on Cybernetics.

[59]  William Ribarsky,et al.  VAiRoma: A Visual Analytics System for Making Sense of Places, Times, and Events in Roman History , 2016, IEEE Transactions on Visualization and Computer Graphics.

[60]  R. Ostfeld,et al.  Spatial epidemiology: an emerging (or re-emerging) discipline. , 2005, Trends in ecology & evolution.

[61]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[62]  Clifton Forlines,et al.  Wakame: sense making of multi-dimensional spatial-temporal data , 2010, AVI.

[63]  G. Jacquez A k nearest neighbour test for space-time interaction. , 1996, Statistics in medicine.

[64]  Thomas Ertl,et al.  Spatiotemporal anomaly detection through visual analysis of geolocated Twitter messages , 2012, 2012 IEEE Pacific Visualization Symposium.

[65]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[66]  David W. S. Wong The Modifiable Areal Unit Problem (MAUP) , 2004 .

[67]  Maximilian Scherr,et al.  Multiple and Coordinated Views in Information Visualization , 2009 .

[68]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[69]  Maribel Yasmina Santos,et al.  Spatial Clustering in SOLAP Systems to Enhance Map Visualization , 2012, Int. J. Data Warehous. Min..

[70]  Heidrun Schumann,et al.  3D information visualization for time dependent data on maps , 2005, Ninth International Conference on Information Visualisation (IV'05).

[71]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[72]  Doris Dransch,et al.  A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series , 2012, IEEE Transactions on Visualization and Computer Graphics.

[73]  Slava Kisilevich,et al.  Event-Based Analysis of People's Activities and Behavior Using Flickr and Panoramio Geotagged Photo Collections , 2010, 2010 14th International Conference Information Visualisation.

[74]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[75]  Shaowen Wang,et al.  Exploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach , 2016, ISPRS Int. J. Geo Inf..