Relationship between elevated levels of the alpha 1 acid glycoprotein in chronic myelogenous leukemia in blast crisis and pharmacological resistance to imatinib (Gleevec) in vitro and in vivo.

[1]  Claude Preudhomme,et al.  Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. , 2002, Blood.

[2]  R. Larson,et al.  Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. , 2002, Blood.

[3]  R. Herrmann,et al.  High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. , 2002, Blood.

[4]  M. Baccarani,et al.  Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. , 2002, Blood.

[5]  S. de Vos,et al.  Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. , 2002, Blood.

[6]  M. Baccarani,et al.  Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. , 2002, The New England journal of medicine.

[7]  C. Peschel,et al.  BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study , 2002, The Lancet.

[8]  Kevin D. Smith,et al.  Alpha1-acid glycoprotein expressed in the plasma of chronic myeloid leukemia patients does not mediate significant in vitro resistance to STI571. , 2002, Blood.

[9]  C. Barthe,et al.  Roots of clinical resistance to STI-571 cancer therapy. , 2001, Science.

[10]  P. N. Rao,et al.  Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification , 2001, Science.

[11]  C. Sawyers,et al.  Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. , 2001, The New England journal of medicine.

[12]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[13]  F. Rossi,et al.  Sensitivity to the abl inhibitor STI571 in fresh leukaemic cells obtained from chronic myelogenous leukaemia patients in different stages of disease , 2001, British journal of haematology.

[14]  J. Melo,et al.  Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. , 2000, Blood.

[15]  S. Urien,et al.  Expression of the genetic variants of human alpha-1-acid glycoprotein in cancer. , 2000, Clinical biochemistry.

[16]  M. Varella‐Garcia,et al.  Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. , 2000, Blood.

[17]  K. Uozumi,et al.  Expression of the multidrug transporter, P‐glycoprotein, in chronic myelogenous leukaemia cells in blast crisis , 1990, British journal of haematology.

[18]  H. Kantarjian,et al.  Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. , 2002, Blood.

[19]  J. Griffin,et al.  Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. , 2000, Blood.

[20]  M. Zucchetti,et al.  Role of (cid:1) 1 Acid Glycoprotein in the In Vivo Resistance of Human BCR-ABL + Leukemic Cells to the Abl Inhibitor STI571 , 2000 .