Superconducting optoelectronic circuits for neuromorphic computing

Neural networks have proven effective for solving many difficult computational problems. Implementing complex neural networks in software is very computationally expensive. To explore the limits of information processing, it will be necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density necessary to scale to systems with enormous entropy. The proposed processing units can operate at speeds of at least $20$ MHz with fully asynchronous activity, light-speed-limited latency, and power densities on the order of 1 mW/cm$^2$ for neurons with 700 connections operating at full speed at 2 K. The processing units achieve an energy efficiency of $\approx 20$ aJ per synapse event. By leveraging multilayer photonics with deposited waveguides and superconductors with feature sizes $>$ 100 nm, this approach could scale to systems with massive interconnectivity and complexity for advanced computing as well as explorations of information processing capacity in systems with an enormous number of information-bearing microstates.

[1]  W. Marsden I and J , 2012 .

[2]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  Jinzhong Yu,et al.  Compact and low-loss silicon power splitter based on inverse tapers. , 2013, Optics letters.

[5]  Toshiharu Makino,et al.  Electrically driven single-photon source at room temperature in diamond , 2012, Nature Photonics.

[6]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[7]  Kei May Lau,et al.  InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band , 2015 .

[8]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[9]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[10]  Michael G. Tanner,et al.  Current distribution in a parallel configuration superconducting strip-line detector , 2013 .

[11]  Cheng Zeng,et al.  Single germanium quantum dot embedded in photonic crystal nanocavity for light emitter on silicon chip. , 2015, Optics express.

[12]  W. J. Feast,et al.  From science to applications , 1993 .

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Antonio Hurtado,et al.  Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems , 2012 .

[15]  Subutai Ahmad,et al.  Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex , 2015, Front. Neural Circuits.

[16]  A. M. Turing,et al.  Computing Machinery and Intelligence , 1950, The Philosophy of Artificial Intelligence.

[17]  Andrea Fiore,et al.  Proposal for a superconducting photon number resolving detector with large dynamic range. , 2012, Optics express.

[18]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[19]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[20]  F. Marsili,et al.  Physics and application of photon number resolving detectors based on superconducting parallel nanowires , 2009, 0902.4824.

[21]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[22]  L. Coldren,et al.  Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. , 2011, Optics express.

[23]  V. Anant,et al.  Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[24]  M. D. Shaw,et al.  A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout , 2015 .

[25]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[26]  E C Mos,et al.  Optical-mode neural network by use of the nonlinear response of a laser diode to external optical feedback. , 1997, Applied optics.

[27]  Paul R Prucnal,et al.  Ultrafast all-optical implementation of a leaky integrate-and-fire neuron. , 2011, Optics express.

[28]  Patrick Crotty,et al.  Josephson junction simulation of neurons. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[30]  Jonathan Machta,et al.  Entropy, information, and computation , 1999 .

[31]  Current Biology , 2012, Current Biology.

[32]  A. Axmann,et al.  1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy , 1985 .

[33]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[35]  Patrick Crotty,et al.  Phase-flip bifurcation in a coupled Josephson junction neuron system , 2014 .

[36]  Paul R. Prucnal,et al.  Broadcast and Weight: An Integrated Network For Scalable Photonic Spike Processing , 2014, Journal of Lightwave Technology.

[37]  Ming C. Wu,et al.  Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers , 2016 .

[38]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[39]  Masaya Notomi,et al.  All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip , 2010, 1002.3207.

[40]  Xiaoge Zeng,et al.  Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. , 2013, Optics letters.

[41]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[42]  Robert H. Hadfield,et al.  Experimental evidence of photoinduced vortex crossing in current carrying superconducting strips , 2015 .

[43]  Tetsuya Asai,et al.  Pulsed Neural Networks Consisting of Single-Flux-Quantum Spiking Neurons , 2007 .

[44]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[45]  Paul R. Prucnal,et al.  Spike processing with a graphene excitable laser , 2016, Scientific Reports.

[46]  Alexander V. Sergienko,et al.  High Speed Travelling Wave Single-Photon Detectors With Near-Unity Quantum Efficiency , 2011 .

[47]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[48]  Chi-Sang Poon,et al.  Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities , 2011, Front. Neurosci..

[50]  Se-Young Seo,et al.  Optical gain at 1.54 μm in erbium-doped silicon nanocluster sensitized waveguide , 2001 .

[51]  杨海涛 交换J—Von Neumann代数的分解 , 2000 .

[52]  BergmanKeren,et al.  Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors , 2011 .

[53]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[54]  M. D. Shaw,et al.  Hotspot Relaxation Dynamics in a Current Carrying Superconductor , 2015, 1506.03129.

[55]  Kwabena Boahen,et al.  Silicon Neurons That Compute , 2012, ICANN.

[56]  D. Psaltis,et al.  Holography in artificial neural networks , 1990, Nature.

[57]  Jiming Bao,et al.  Sub-bandgap luminescence centers in silicon created by self-ion implantation and thermal annealing , 2010 .

[58]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[59]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[60]  Joseph W. Goodman,et al.  Fan-in and Fan-out with Optical Interconnections , 1985 .

[61]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[62]  Thomas G. Brown,et al.  Electroluminescence from sulfur impurities in a p‐n junction formed in epitaxial silicon , 1989 .

[63]  Federico Capasso,et al.  On the temperature dependence of point-defect-mediated luminescence in silicon , 2009 .

[64]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[65]  S. Corzine,et al.  InP Photonic Integrated Circuits , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[67]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[68]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[69]  Alexander Spott,et al.  Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform. , 2015, Optics express.

[70]  Jeffrey M. Shainline,et al.  Silicon as an emissive optical medium , 2007 .

[71]  Vishal Saxena,et al.  A CMOS Spiking Neuron for Brain-Inspired Neural Networks With Resistive Synapses and In Situ Learning , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[72]  Jean,et al.  The Computer and the Brain , 1989, Annals of the History of Computing.

[73]  Jeffrey M. Shainline,et al.  Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy , 2007 .

[74]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[75]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[76]  Karl K Berggren,et al.  A superconducting-nanowire three-terminal electrothermal device. , 2014, Nano letters.

[77]  Hui Chen,et al.  Ultra-low temperature silicon nitride photonic integration platform. , 2016, Optics express.

[78]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[79]  G. Van der Sande,et al.  Semiconductor ring lasers as optical neurons , 2012, IEEE Photonics Conference 2012.

[80]  G. Davies,et al.  The 1018 meV (W or I1) vibronic band in silicon , 1987 .

[81]  Heike Riel,et al.  Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si , 2015 .

[82]  Federico Capasso,et al.  Point defect engineered Si sub-bandgap light-emitting diode. , 2007, Optics express.

[83]  HE Ixtroductiont,et al.  The Bell System Technical Journal , 2022 .

[84]  Charles M. Bachmann,et al.  Neural Networks and Their Applications , 1994 .

[85]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[86]  G. Lo,et al.  Multilayer Silicon Nitride-on-Silicon Integrated Photonic Platforms and Devices , 2015, Journal of Lightwave Technology.

[87]  A. Hall Applied Optics. , 2022, Science.

[88]  Makoto Naruse NANOPHOTONIC INFORMATION PHYSICS , 2014 .

[89]  W. Pernice,et al.  Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires , 2015 .

[90]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[91]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[92]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[93]  Solomon Assefa,et al.  CMOS-Integrated Optical Receivers for On-Chip Interconnects , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[94]  E T Rolls,et al.  Correlations and the encoding of information in the nervous system , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[95]  Purnawirman,et al.  C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. , 2013, Optics letters.

[96]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[97]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[98]  J. Danckaert,et al.  Solitary and coupled semiconductor ring lasers as optical spiking neurons. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  D. Psaltis,et al.  Optoelectronic implementations of neural networks , 1989, IEEE Communications Magazine.

[100]  J R A Beale,et al.  Solid State Electronic Devices , 1973 .

[101]  Anschrift Dr. Cornelia Denz Optical Neural Networks , 1998, Vieweg+Teubner Verlag.

[102]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[103]  Michael L. Schneider,et al.  Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[104]  Sven Öberg,et al.  Interstitial aggregates and a new model for the I1/W optical centre in silicon , 1999 .

[105]  D. McCandless Fundamental neuroscience , 1997, Metabolic Brain Disease.

[106]  Pierre Baldi,et al.  On Properties of Networks of Neuron-Like Elements , 1987, NIPS.

[107]  Marco Fiorentino,et al.  Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth , 2011 .

[108]  Andrea Fiore,et al.  Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths , 2008 .

[109]  Gerd Folkers,et al.  On computable numbers , 2016 .

[110]  S. WEINTROUB,et al.  A Review of Scientific Instruments , 1932, Nature.

[111]  Shih-Chii Liu,et al.  Neuromorphic sensory systems , 2010, Current Opinion in Neurobiology.

[112]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[113]  W. Martin Usrey,et al.  Visual processing in the monkey , 2011 .

[114]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[115]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[116]  Rajeev J Ram,et al.  Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process. , 2014, Optics letters.

[117]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[118]  M Poot,et al.  Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip , 2016, Nature communications.

[119]  Zach DeVito,et al.  Opt , 2017 .

[120]  T. K. Woodward,et al.  1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies , 1999 .

[121]  Thomas Nowotny,et al.  Dynamical origin of independent spiking and bursting activity in neural microcircuits. , 2007, Physical review letters.

[122]  T. Bonhoeffer,et al.  Current opinion in neurobiology , 1997, Current Opinion in Neurobiology.

[123]  S. Pantelides The electronic structure of impurities and other point defects in semiconductors , 1978 .

[124]  G. Roelkens,et al.  Thin-Film III-V Photodetectors Integrated on Silicon-on-Insulator Photonic ICs , 2007, Journal of Lightwave Technology.

[125]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[126]  B. Schrauwen,et al.  Cascadable excitability in microrings. , 2012, Optics express.

[127]  Zheng,et al.  Electroluminescence of erbium-doped silicon. , 1996, Physical review. B, Condensed matter.

[128]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[129]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.