StRETcH: a Soft to Resistive Elastic Tactile Hand

Soft optical tactile sensors enable robots to manipulate deformable objects by capturing important features such as high-resolution contact geometry and estimations of object compliance. This work presents a variable stiffness soft tactile end-effector called StRETcH, a Soft to Resistive Elastic Tactile Hand, that is easily manufactured and integrated with a robotic arm. An elastic membrane is suspended between two robotic fingers, and a depth sensor capturing the deformations of the elastic membrane enables sub-millimeter accurate estimates of contact geometries. The parallel-jaw gripper varies the stiffness of the membrane by uniaxially stretching it, which controllably modulates StRETcH’s effective modulus from approximately 4kPa to 9kPa. This work uses StRETcH to reconstruct the contact geometry of rigid and deformable objects, estimate the stiffness of four balloons filled with different substances, and manipulate dough into a desired shape.

[1]  J. Guccione,et al.  Finite elastic wrinkling deformations of incompressible fiber-reinforced plates. , 2019, International journal of engineering science.

[2]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[3]  Andrew Owens,et al.  Shape-independent hardness estimation using deep learning and a GelSight tactile sensor , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Jamie Kyujin Paik,et al.  Soft Pneumatic Actuator skin with embedded sensors , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Daniel M. Vogt,et al.  Batch Fabrication of Customizable Silicone‐Textile Composite Capacitive Strain Sensors for Human Motion Tracking , 2017 .

[6]  Mitsuhiro Shikida,et al.  Active tactile sensor for detecting contact force and hardness of an object , 2003 .

[7]  Jonathan Rossiter,et al.  The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies , 2018, Soft robotics.

[8]  Helge J. Ritter,et al.  Flexible and stretchable fabric-based tactile sensor , 2015, Robotics Auton. Syst..

[9]  H. Weber,et al.  Analytical, numerical and experimental analysis of continuous indentation of a flat hyperelastic circular membrane by a rigid cylindrical indenter , 2014 .

[10]  Russ Tedrake,et al.  Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation , 2019, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).

[11]  Russ Tedrake,et al.  Soft-bubble grippers for robust and perceptive manipulation , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  William Robson Schwartz,et al.  BRAND: A robust appearance and depth descriptor for RGB-D images , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Yunhui Liu,et al.  Automatic 3-D Manipulation of Soft Objects by Robotic Arms With an Adaptive Deformation Model , 2016, IEEE Transactions on Robotics.

[14]  M. Ohka,et al.  Determination of object stiffness control parameters in robot manipulation using a prototype optical three-axis tactile sensor , 2008, 2008 IEEE Sensors.

[15]  Wei H. Yang,et al.  Indentation of a Circular Membrane , 1971 .

[16]  Aude Billard,et al.  Learning complex sequential tasks from demonstration: A pizza dough rolling case study , 2016, 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[17]  Kaspar Althoefer,et al.  Tactile sensing for dexterous in-hand manipulation in robotics-A review , 2011 .

[18]  Si Li,et al.  A neuro-inspired artificial peripheral nervous system for scalable electronic skins , 2019, Science Robotics.

[19]  W. Nachbar,et al.  Finite indentation of an elastic membrane by a spherical indenter , 1968 .

[20]  T. Mackin,et al.  Spherical indentation of freestanding circular thin films in the membrane regime , 2004 .

[21]  R. Bajcsy,et al.  Robot Learning from Demonstration with Tactile Signals for Geometry-Dependent Tasks , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Isabella Huang,et al.  High Resolution Soft Tactile Interface for Physical Human-Robot Interaction , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Mengmeng Liu,et al.  Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing , 2017, Science Advances.

[24]  Michelle C. Yuen,et al.  Morphing Robots Using Robotic Skins That Sculpt Clay , 2019, IEEE Robotics and Automation Letters.

[25]  Pieter Abbeel,et al.  Learning Predictive Representations for Deformable Objects Using Contrastive Estimation , 2020, CoRL.

[26]  Sanlin S. Robinson,et al.  Highly stretchable electroluminescent skin for optical signaling and tactile sensing , 2016, Science.

[27]  Priya Sundaresan,et al.  Learning Rope Manipulation Policies Using Dense Object Descriptors Trained on Synthetic Depth Data , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[28]  Masayuki Inaba,et al.  Development of soft stretchable knit sensor for humanoids' whole-body tactile sensibility , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[29]  M. Shirani,et al.  Simulation of wrinkling in incompressible anisotropic thin sheets with wavy fibers , 2020 .

[30]  Yashraj S. Narang,et al.  Interpreting and Predicting Tactile Signals via a Physics-Based and Data-Driven Framework , 2020, Robotics: Science and Systems.

[31]  Isabella Huang,et al.  A Depth Camera-Based Soft Fingertip Device for Contact Region Estimation and Perception-Action Coupling , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[32]  Thomas J. Mackin,et al.  Indentation of freestanding circular elastomer films using spherical indenters , 2004 .

[33]  Ruzena Bajcsy,et al.  Towards a Soft Fingertip with Integrated Sensing and Actuation , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Edward H. Adelson,et al.  Active Clothing Material Perception Using Tactile Sensing and Deep Learning , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Belhassen-Chedli Bouzgarrou,et al.  Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey , 2018, Int. J. Robotics Res..

[36]  Christopher G. Atkeson,et al.  Combining finger vision and optical tactile sensing: Reducing and handling errors while cutting vegetables , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[37]  Vladimír Petrík,et al.  Garment perception and its folding using a dual-arm robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38]  Christos E. Constantinou,et al.  Real time robotic tactile sensor system for the determination of the physical properties of biomaterials , 2004 .

[39]  Yun-Hui Liu,et al.  Fourier-Based Shape Servoing: A New Feedback Method to Actively Deform Soft Objects into Desired 2-D Image Contours , 2018, IEEE Transactions on Robotics.

[40]  W. Hong,et al.  Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter , 2018 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Ravinder Dahiya,et al.  Robotic Tactile Perception of Object Properties: A Review , 2017, ArXiv.

[43]  Gert Kootstra,et al.  Classification of rigid and deformable objects using a novel tactile sensor , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[44]  F. Ju,et al.  A variable-impedance piezoelectric tactile sensor with tunable sensing performance for tissue hardness sensing in robotic tumor palpation , 2018, Smart Materials and Structures.

[45]  Trevor Darrell,et al.  A geometric approach to robotic laundry folding , 2012, Int. J. Robotics Res..

[46]  Devin J. Balkcom,et al.  Robotic origami folding , 2008, Int. J. Robotics Res..