Efficient and Effective Quantum Compiling for Entanglement-based Machine Learning on IBM Q Devices

Quantum compiling means fast, device-aware implementation of quantum algorithms (i.e., quantum circuits, in the quantum circuit model of computation). In this paper, we present a strategy for compiling IBM Q -aware, low-depth quantum circuits that generate Greenberger-Horne-Zeilinger (GHZ) entangled states. The resulting compiler can replace the QISKit compiler for the specific purpose of obtaining improved GHZ circuits. It is well known that GHZ states have several practical applications, including quantum machine learning. We illustrate our experience in implementing and querying a uniform quantum example oracle based on the GHZ circuit, for solving the classically hard problem of learning parity with noise.

[1]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[2]  Michael Kearns,et al.  Efficient noise-tolerant learning from statistical queries , 1993, STOC.

[3]  Andrew W. Cross,et al.  Demonstration of quantum advantage in machine learning , 2015, npj Quantum Information.

[4]  Hans Ulrich Simon,et al.  On learning ring-sum-expansions , 1990, COLT '90.

[5]  Peter L. McMahon,et al.  Decoherence of up to 8-qubit entangled states in a 16-qubit superconducting quantum processor , 2019, Quantum Science and Technology.

[6]  Rocco A. Servedio,et al.  Improved Bounds on Quantum Learning Algorithms , 2004, Quantum Inf. Process..

[7]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[8]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[9]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[10]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[11]  F K Wilhelm,et al.  Linear and Logarithmic Time Compositions of Quantum Many-Body Operators. , 2017, Physical review letters.

[12]  Angelo Oddi,et al.  Greedy Randomized Search for Scalable Compilation of Quantum Circuits , 2018, CPAIOR.

[13]  Translator-IEEE Expert staff Machine Learning: A Theoretical Approach , 1992, IEEE Expert.

[14]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[15]  Sebastian Deffner,et al.  Demonstration of entanglement assisted invariance on IBM's quantum experience , 2016, Heliyon.

[16]  Andrew W. Cross,et al.  Quantum learning robust to noise , 2015 .

[17]  Manfred K. Warmuth,et al.  Learning integer lattices , 1990, COLT '90.

[18]  Andrew A. Houck,et al.  Suppression of photon shot noise dephasing in a tunable coupling superconducting qubit , 2016, 1603.01224.

[19]  C-Y Lu,et al.  Entanglement-based machine learning on a quantum computer. , 2015, Physical review letters.

[20]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[21]  Matthias Troyer,et al.  A software methodology for compiling quantum programs , 2016, ArXiv.

[22]  Krzysztof Pietrzak,et al.  Cryptography from Learning Parity with Noise , 2012, SOFSEM.

[23]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[24]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[25]  Andrew W. Cross,et al.  Quantum learning robust against noise , 2014, 1407.5088.

[26]  Jeremy Frank,et al.  Compiling quantum circuits to realistic hardware architectures using temporal planners , 2017, ArXiv.

[27]  Chi Zhang,et al.  An improved lower bound on query complexity for quantum PAC learning , 2010, Inf. Process. Lett..

[28]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[29]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[30]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.