Backward Population Synthesis: Mapping the Evolutionary History of Gravitational-wave Progenitors

One promising way to extract information about stellar astrophysics from a gravitational-wave catalog is to compare the catalog to the outputs of stellar population synthesis modeling with varying physical assumptions. The parameter space of physical assumptions in population synthesis is high-dimensional and the choice of parameters that best represents the evolution of a binary system may depend in an as-yet-to-be-determined way on the system’s properties. Here we propose a pipeline to simultaneously infer zero-age main-sequence properties and population synthesis parameter settings controlling modeled binary evolution from individual gravitational-wave observations of merging compact binaries. Our pipeline can efficiently explore the high-dimensional space of population synthesis settings and progenitor system properties for each system in a catalog of gravitational-wave observations. We apply our pipeline to observations in the third LIGO–Virgo Gravitational-Wave Transient Catalog. We showcase the effectiveness of this pipeline with a detailed study of the progenitor properties and population synthesis settings that produce mergers like the observed GW150914. Our pipeline permits a measurement of the variation of population synthesis parameter settings with binary properties, if any; we illustrate the possibility of such capability by presenting inferences for the recent GWTC-3 transient catalog that suggest that the stable mass transfer efficiency parameter may vary with primary black hole mass.

[1]  N. Christensen,et al.  Inferring binary black holes stellar progenitors with gravitational wave sources , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  S. Stevenson,et al.  Dynamical double black holes and their host cluster properties , 2022, 2202.08924.

[3]  I. Mandel,et al.  Impact of massive binary star and cosmic evolution on gravitational wave observations II: Double compact object rates and properties , 2021, Monthly Notices of the Royal Astronomical Society.

[4]  M. Fishbach,et al.  Bridging the Gap: Categorizing Gravitational-wave Events at the Transition between Neutron Stars and Black Holes , 2021, 2111.03498.

[5]  K. Omukai,et al.  Merger Rate Density of Binary Black Holes through Isolated Population I, II, III and Extremely Metal-poor Binary Star Evolution , 2021, The Astrophysical Journal.

[6]  I. Mandel,et al.  The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter , 2021, The Astrophysical Journal.

[7]  Jim W. Barrett,et al.  Rapid Stellar and Binary Population Synthesis with COMPAS , 2021, The Astrophysical Journal Supplement Series.

[8]  Y. Bouffanais,et al.  The Cosmic Evolution of Binary Black Holes in Young, Globular and Nuclear Star Clusters: Rates, Masses, Spins and Mixing Fractions , 2021, 2109.06222.

[9]  B. McKernan,et al.  Binary black hole merger rates in AGN disks versus nuclear star clusters: Loud beats quiet , 2021, Monthly notices of the Royal Astronomical Society.

[10]  I. Mandel,et al.  Rates of compact object coalescences , 2021, Living Reviews in Relativity.

[11]  C. Berry,et al.  Binary Black Hole Formation with Detailed Modeling: Stable Mass Transfer Leads to Lower Merger Rates , 2021, The Astrophysical Journal.

[12]  T. Callister,et al.  Who Ordered That? Unequal-mass Binary Black Hole Mergers Have Larger Effective Spins , 2021, The Astrophysical Journal Letters.

[13]  Y. Bouffanais,et al.  New insights on binary black hole formation channels after GWTC-2: young star clusters versus isolated binaries , 2021, Monthly Notices of the Royal Astronomical Society.

[14]  W. Farr,et al.  Probing Multiple Populations of Compact Binaries with Third-generation Gravitational-wave Detectors , 2020, 2012.09876.

[15]  Michael L. Waskom,et al.  Seaborn: Statistical Data Visualization , 2021, J. Open Source Softw..

[16]  C. Berry,et al.  Targeted Modeling of GW150914's Binary Black Hole Source with Dart_board , 2020, 2011.13918.

[17]  C. Pankow,et al.  One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways , 2020, The Astrophysical Journal.

[18]  C. Berry,et al.  The impact of mass-transfer physics on the observable properties of field binary black hole populations , 2020, Astronomy & Astrophysics.

[19]  C. Haster,et al.  Massive Stellar Triples Leading to Sequential Binary Black Hole Mergers in the Field , 2020, 2010.13669.

[20]  H. Susa,et al.  Merger Rate Density of Population III Binary Black Holes Below, Above, and in the Pair-instability Mass Gap , 2020, The Astrophysical Journal.

[21]  C. Berry,et al.  Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution , 2020, The Astrophysical Journal.

[22]  M. J. Williams,et al.  Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue , 2020, Monthly Notices of the Royal Astronomical Society.

[23]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[24]  Y. Bouffanais,et al.  Binary black holes in young star clusters: the impact of metallicity , 2020, 2004.09525.

[25]  R. O’Shaughnessy,et al.  Black hole, neutron star, and white dwarf merger rates in AGN discs , 2020, 2002.00046.

[26]  M. Zevin,et al.  COSMIC Variance in Binary Population Synthesis , 2019, The Astrophysical Journal.

[27]  S. D. Mink,et al.  Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap , 2019, The Astrophysical Journal.

[28]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[29]  Linhao Ma,et al.  Most Black Holes Are Born Very Slowly Rotating , 2019, The Astrophysical Journal.

[30]  I. Mandel,et al.  The origin of spin in binary black holes , 2019, Astronomy & Astrophysics.

[31]  Jim W. Barrett,et al.  The effect of the metallicity-specific star formation history on double compact object mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Y. Bouffanais,et al.  Constraining the Fraction of Binary Black Holes Formed in Isolation and Young Star Clusters with Gravitational-wave Data , 2019, The Astrophysical Journal.

[33]  B. Kocsis,et al.  Black hole mergers from quadruples , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  P. Lasky,et al.  Bilby: A User-friendly Bayesian Inference Library for Gravitational-wave Astronomy , 2018, The Astrophysical Journal Supplement Series.

[35]  W. Farr,et al.  Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes , 2018, The Astrophysical Journal.

[36]  Z. Sándor,et al.  Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes. II. Spins and Incoming Objects , 2018, The Astrophysical Journal.

[37]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[38]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[39]  P. Hopkins,et al.  Predicting the binary black hole population of the Milky Way with cosmological simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  Jim W. Barrett,et al.  Accuracy of inference on the physics of binary evolution from gravitational-wave observations , 2017, 1711.06287.

[41]  T. Fragos,et al.  dart_board: Binary Population Synthesis with Markov Chain Monte Carlo , 2017, The Astrophysical Journal Supplement Series.

[42]  M. Fishbach,et al.  Where Are LIGO’s Big Black Holes? , 2017, 1709.08584.

[43]  M. Mapelli,et al.  The cosmic merger rate of stellar black hole binaries from the Illustris simulation , 2017, 1708.05722.

[44]  C. Pankow,et al.  Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations , 2017, 1704.07379.

[45]  I. Mandel,et al.  Formation of the first three gravitational-wave observations through isolated binary evolution , 2017, Nature communications.

[46]  F. Antonini,et al.  Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution , 2017, 1703.06614.

[47]  Ilya Mandel,et al.  Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments , 2017, 1703.06873.

[48]  B. Metzger,et al.  Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO , 2017, The Astrophysical Journal.

[49]  K. Hotokezaka,et al.  Formation pathway of Population III coalescing binary black holes through stable mass transfer , 2017, 1701.04823.

[50]  Sambaran Banerjee,et al.  Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation , 2016, 1611.09357.

[51]  S. Woosley Pulsational Pair-instability Supernovae , 2016, 1608.08939.

[52]  S. Tremaine,et al.  Lidov–Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems , 2016, 1608.07642.

[53]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[54]  Daniel Foreman-Mackey,et al.  corner.py: Scatterplot matrices in Python , 2016, J. Open Source Softw..

[55]  Z. Haiman,et al.  Gravitational wave background from Population III binary black holes consistent with cosmic reionization , 2016, 1603.06921.

[56]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[57]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[58]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[59]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[60]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[61]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[62]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[63]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[64]  K. Hotokezaka,et al.  Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave , 2014, 1402.6672.

[65]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[66]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[67]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[68]  R. O’Shaughnessy,et al.  Binary Mergers and Growth of Black Holes in Dense Star Clusters , 2005, astro-ph/0508224.

[69]  T. Bulik,et al.  The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources , 2004, astro-ph/0403361.

[70]  R. Taam,et al.  Thermal Timescale Mass Transfer and the Evolution of White Dwarf Binaries , 2003, astro-ph/0310126.

[71]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[72]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[73]  P. K. Panda,et al.  Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo , 2019, 1912.11716.

[74]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[75]  Astronomy & Astrophysics manuscript no. , 1991 .

[76]  H. Lamers,et al.  UvA-DARE ( Digital Academic Repository ) Mass-loss predictions for 0 and B stars as a fuction of metallicity , 2022 .

[77]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.