On Finite Blocklength Converse Bounds for Classical Communication Over Quantum Channels

We explore several new converse bounds for classical communication over quantum channels in the finite blocklength regime. First, we show that the Matthews-Wehner meta-converse bound for entanglement-assisted classical communication can be achieved by activated, no-signalling assisted codes, suitably generalizing a result for classical channels. Second, we derive a new meta-converse on the amount of information unassisted codes can transmit over a single use of a quantum channel. We further show that this meta-converse can be evaluated via semidefinite programming. As an application, we provide a second-order analysis of classical communication over quantum erasure channels.

[1]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[2]  Runyao Duan,et al.  A new property of the Lovász number and duality relations between graph parameters , 2015, Discret. Appl. Math..

[3]  William Matthews,et al.  A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes , 2011, IEEE Transactions on Information Theory.

[4]  R. Duan,et al.  Activated zero-error classical communication over quantum channels assisted with quantum no-signalling correlations , 2015, 1510.05437.

[5]  Soojoon Lee,et al.  Quantum non-signalling assisted zero-error classical capacity of qubit channels , 2016, ArXiv.

[6]  Runyao Duan,et al.  No-Signalling-Assisted Zero-Error Capacity of Quantum Channels and an Information Theoretic Interpretation of the Lovász Number , 2014, IEEE Transactions on Information Theory.

[7]  M. Hastings Superadditivity of communication capacity using entangled inputs , 2009 .

[8]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[9]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[10]  Runyao Duan,et al.  On the quantum no-signalling assisted zero-error classical simulation cost of non-commutative bipartite graphs , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[11]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[12]  Runyao Duan,et al.  Separation Between Quantum Lovász Number and Entanglement-Assisted Zero-Error Classical Capacity , 2016, IEEE Transactions on Information Theory.

[13]  Nilanjana Datta,et al.  ADDITIVITY FOR TRANSPOSE DEPOLARIZING CHANNELS , 2004 .

[14]  C. Helstrom Quantum detection and estimation theory , 1969 .

[15]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[16]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[17]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[18]  Nilanjana Datta,et al.  Generalized relative entropies and the capacity of classical-quantum channels , 2008, 0810.3478.

[19]  C. King Additivity for unital qubit channels , 2001, quant-ph/0103156.

[20]  Jürg Wullschleger,et al.  Unconditional Security From Noisy Quantum Storage , 2009, IEEE Transactions on Information Theory.

[21]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[22]  Dong Yang,et al.  Potential Capacities of Quantum Channels , 2015, IEEE Transactions on Information Theory.

[23]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[24]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[25]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[26]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[27]  William Matthews,et al.  On the Power of PPT-Preserving and Non-Signalling Codes , 2014, IEEE Transactions on Information Theory.

[28]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[29]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[30]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[31]  Runyao Duan,et al.  Converse bounds for classical communication over quantum networks , 2017, 1712.05637.

[32]  Runyao Duan,et al.  Semidefinite Programming Strong Converse Bounds for Classical Capacity , 2016, IEEE Transactions on Information Theory.

[33]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[34]  By Ke Li SECOND-ORDER ASYMPTOTICS FOR QUANTUM HYPOTHESIS TESTING , 2018 .

[35]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[36]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[37]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[38]  Soojoon Lee,et al.  Quantum non-signalling assisted zero-error classical capacity of qubit channels , 2016 .

[39]  J. Kowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[40]  Xin Wang,et al.  On Converse Bounds for Classical Communication Over Quantum Channels , 2017, IEEE Transactions on Information Theory.

[41]  M. Fukuda Extending additivity from symmetric to asymmetric channels , 2005, quant-ph/0505022.

[42]  M. Sion On general minimax theorems , 1958 .