HIGH-REDSHIFT STARBURSTING DWARF GALAXIES REVEALED BY γ-RAY BURST AFTERGLOWS

We present a study of 15 long-duration γ-ray burst (GRB) host galaxies at z > 2. The GRBs are selected with available early-time afterglow spectra in order to compare interstellar medium (ISM) absorption-line properties with stellar properties of the host galaxies. In addition to five previously studied hosts, we consider new detections for the host galaxies of GRB 050820 and GRB 060206, and place 2σ upper limits to the luminosities of the remaining unidentified hosts. We examine the nature of the host galaxy population and find that (1) the UV luminosity distribution of GRB host galaxies is consistent with expectations from a UV luminosity weighted random galaxy population with a median luminosity of 〈L(UV)〉 = 0.1 L *, (2) there exists a moderate correlation between UV luminosity and Si II λ 1526 absorption width, which together with the observed large line widths of W(1526)>1.5 A for a large fraction of the objects suggests a galactic outflow driven velocity field in the host galaxies, (3) there is tentative evidence for a trend of declining ISM metallicity with decreasing galaxy luminosity in the star-forming galaxy population at z = 2-4, (4) the interstellar UV radiation field is found to be 35-350× higher in GRB hosts than the Galactic mean value, and (5) additional galaxies are found at ≲2″ from the GRB host in all fields with known presence of strong Mg II absorbers, but no additional faint galaxies are found at ≲2″ in fields without strong Mg II absorbers. Our study confirms that the GRB host galaxies (with known optical afterglows) are representative of unobscured star-forming galaxies at z > 2, and demonstrates that high spatial resolution images are necessary for an accurate identification of GRB host galaxies in the presence of strong intervening absorbers. © 2009. The American Astronomical Society. All rights reserved.

[1]  Jason X. Prochaska,et al.  Accepted for Publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 20/04/00 ON THE ABSENCE OF WIND SIGNATURES IN GRB AFTERGLOW SPECTRA: CONSTRAINTS ON THE WOLF-RAYET WINDS OF GRB PROGENITORS , 2007 .

[2]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[3]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[4]  Austin,et al.  GRB 021004: a Massive Progenitor Star Surrounded by Shells , 2002 .

[5]  N. Masetti,et al.  The Prompt Optical/Near-Infrared Flare of GRB 050904: The Most Luminous Transient Ever Detected , 2007 .

[6]  Evert Rol,et al.  The host of GRB 060206: kinematics of a distant galaxy , 2007, 0708.3448.

[7]  Jason X. Prochaska,et al.  Echelle Spectroscopy of a Gamma-Ray Burst Afterglow at z = 3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe , 2005 .

[8]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[9]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. I. GHRS Observations of the Small Magellanic Cloud Star Sk 108 , 1997 .

[10]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[11]  M. Pettini,et al.  A Comparison of Absorption- and Emission-Line Abundances in the Nearby Damped Lyα Galaxy SBS 1543+593 , 2005, astro-ph/0509002.

[12]  Switzerland,et al.  Stellar evolution with rotation - XIII. Predicted GRB rates at various Z , 2005, astro-ph/0507343.

[13]  DISCOVERY OF MASSIVE EVOLVED GALAXIES AT z > 3 IN THE HUBBLE ULTRA DEEP FIELD , 2004, astro-ph/0405432.

[14]  J. Prochaska,et al.  The Molecular Hydrogen Deficit in Gamma-Ray Burst Afterglows , 2008, 0802.0737.

[15]  J. Gorosabel,et al.  Star Formation Rates and Stellar Masses in z ~ 1 Gamma-Ray Burst Hosts , 2006, astro-ph/0612355.

[16]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[17]  F. Frontera Gamma Ray Bursts in the Afterglow Era , 2003 .

[18]  Jacqueline Bergeron,et al.  Discoveries and Research Prospects from 8- to 10-Meter-Class Telescopes , 2000 .

[19]  J. P. U. Fynbo,et al.  Absorption systems in the spectrum of GRB 021004 , 2002, astro-ph/0210654.

[20]  Norbert Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005 .

[21]  J. M. Castro Cerón,et al.  On the Afterglow and Host Galaxy of GRB 021004: A Comprehensive Study with the Hubble Space Telescope , 2005, astro-ph/0506101.

[22]  Sandra Savaglio,et al.  Intervening Metal Systems in GRB and QSO Sight Lines: The Mg II and C IV Question , 2007, 0705.0706.

[24]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[25]  J. Hjorth,et al.  Gamma-Ray Bursts in the Afterglow Era , 2001 .

[26]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[27]  S. M. Fall,et al.  Are High-Redshift Damped Lyα Galaxies Lyman Break Galaxies? , 2002, astro-ph/0203361.

[28]  U. Michigan,et al.  The Interstellar Medium of Gamma-Ray Burst Host Galaxies. I. Echelle Spectra of Swift GRB Afterglows , 2006, astro-ph/0611092.

[29]  Christian Wolf,et al.  The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities , 2007 .

[30]  B. Robertson,et al.  Molecular Hydrogen and Global Star Formation Relations in Galaxies , 2007, 0710.2102.

[31]  A. Vidal-Madjar,et al.  FUSE observations of the H I interstellar gas of I Zw 18 , 2003, astro-ph/0309766.

[32]  A Shot in the Dark: A Technique for Locating the Stellar Counterparts of Damped Lyα Absorbers* , 2006, astro-ph/0603323.

[33]  Jason X. Prochaska,et al.  Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .

[34]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[35]  S. E. Persson,et al.  A New System of Faint Near-Infrared Standard Stars , 1998 .

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[38]  M. C. Bentz,et al.  Strongly variable z = 1.48 Fe II and Mg II absorption in the spectra of z = 4.05 GRB 060206 , 2006 .

[39]  The Nature of Damped Lyα Absorbing Galaxies at z ≤ 1: A Photometric Redshift Survey of Damped Lyα Absorbers* , 2003, astro-ph/0308190.

[40]  IoA,et al.  On the Incidence of Strong Mg II Absorbers along Gamma-Ray Burst Sight Lines , 2006 .

[41]  J. Salzer,et al.  Spectroscopy of Outlying H II Regions in Spiral Galaxies: Abundances and Radial Gradients , 1998, astro-ph/9808315.

[42]  M. Franx,et al.  Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field , 2004, astro-ph/0406562.

[43]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[44]  C. Guidorzi,et al.  THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE “NAKED-EYE” GRB080319B , 2008, 0804.2141.

[45]  S. R. Kulkarni,et al.  Keck Spectroscopy and Hubble Space Telescope Imaging of GRB 000926: Probing a Host Galaxy at z = 2.038 , 2003 .

[46]  B. Paczyński Are Gamma-Ray Bursts in Star-Forming Regions? , 1997, astro-ph/9710086.

[47]  The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale , 2003, astro-ph/0303452.

[48]  Andrew Pontzen,et al.  Direct observational test rules out small Mg ii absorbers , 2007, 0708.0847.

[49]  L. A. Antonelli,et al.  UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment , 2006, astro-ph/0609825.

[50]  Tum,et al.  Where are the cosmic metals at z∼ 3? , 2007, astro-ph/0703698.

[51]  IAA-CSIC,et al.  UV star-formation rates of GRB host galaxies , 2004, astro-ph/0407066.

[52]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[53]  E. Rol,et al.  Very High Column Density and Small Reddening toward GRB 020124 at z = 3.20 , 2003, astro-ph/0307331.

[54]  S. Mereghetti,et al.  Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? , 2003, astro-ph/0301149.

[55]  Sandra Savaglio,et al.  Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations , 2006 .

[56]  Jason X. Prochaska,et al.  On the Perils of Curve-of-Growth Analysis: Systematic Abundance Underestimates for the Gas in Gamma-Ray Burst Host Galaxies , 2006, astro-ph/0606500.

[57]  S. M. Fall,et al.  High-Redshift Extremely Red Objects in the Hubble Space Telescope Ultra Deep Field Revealed by the GOODS Infrared Array Camera Observations , 2004, astro-ph/0408070.

[58]  J. P. U. Fynbo,et al.  On the nature of nearby GRB/SN host galaxies ⋆ , 2005 .

[59]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[60]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[61]  University of British Columbia,et al.  Feedback and the fundamental line of low-luminosity low-surface-brightness/dwarf galaxies , 2002, astro-ph/0210454.

[62]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[63]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[64]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[65]  D. York,et al.  Interstellar Abundances in the Magellanic Clouds. II. The Line of Sight to SN 1987A in the Large Magellanic Cloud , 1999 .

[66]  A. Hopkins,et al.  Emission-Line Spectroscopy of Damped Lyα Systems: The Case of SBS 1543+593/HS 1543+5921 , 2005, astro-ph/0504556.

[67]  K. Stanek,et al.  Disparate MG II absorption statistics towards quasars and gamma-ray bursts: a possible explanation , 2006, astro-ph/0605676.

[68]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[69]  P. Moller,et al.  Ly+ and ultraviolet emission from high-redshift gamma-ray burst hosts: to what extent do gamma-ray bursts trace star formation? , 2005 .

[70]  Stephen C. Russell,et al.  Abundances of the heavy elements in the Magellanic Clouds. III - Interpretation of results , 1992 .

[71]  J. Tinker,et al.  The Varied Fates of z ~ 2 Star-forming Galaxies , 2007, 0711.0001.

[72]  L. Piro,et al.  The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts , 2002, astro-ph/0207320.

[73]  J. Tinker,et al.  The Baryon Content of Dark Matter Halos: Empirical Constraints from Mg II Absorbers , 2008, 0801.2169.

[74]  L. Armus,et al.  Are Starburst Galaxies the Hosts of Gamma-Ray Bursts?* , 2002 .

[75]  B. Gibson,et al.  The Magellanic Stream, High-Velocity Clouds, and the Sculptor Group , 2002, astro-ph/0209127.

[76]  I. Lerche,et al.  The generation of magnetic fields in astrophysical bodies. VII - The internal small-scale fields , 1971 .

[77]  Jason X. Prochaska,et al.  Dissecting the Circumstellar Environment of γ-Ray Burst Progenitors , 2006, astro-ph/0601057.

[78]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[79]  S. Arnouts,et al.  The fabulous destiny of galaxies : bridging past and present , 2006 .

[80]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[81]  Mark Clampin,et al.  Advanced camera for the Hubble Space Telescope , 1996, Astronomical Telescopes and Instrumentation.

[82]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[83]  Max Pettini,et al.  The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation , 2007 .

[84]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[85]  E. Rol,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000 .

[86]  L. Piro,et al.  Broadband Observations of the Afterglow of GRB 000926: Observing the Effect of Inverse Compton Scattering and Evidence for a High-Density Environment , 2001 .

[87]  J. Xavier Prochaska,et al.  Reconciling the Metallicity Distributions of Gamma-Ray Burst, Damped Lyα, and Lyman Break Galaxies at z ≈ 3 , 2008, Proceedings of the International Astronomical Union.

[88]  Ryan Chornock,et al.  GRB 021004: A Possible Shell Nebula around a Wolf-Rayet Star Gamma-Ray Burst Progenitor , 2003, astro-ph/0303616.

[89]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[90]  S. Covino,et al.  A Flash in the Dark: UVES Very Large Telescope High-Resolution Spectroscopy of Gamma-Ray Burst Afterglows , 2004, astro-ph/0409717.

[91]  J. Prochaska,et al.  A New Constraint on the Escape Fraction in Distant Galaxies Using γ-Ray Burst Afterglow Spectroscopy , 2007, 0707.2594.

[92]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[93]  SCALING RELATIONS OF DWARF GALAXIES WITHOUT SUPERNOVA-DRIVEN WINDS , 2006, astro-ph/0609763.

[94]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[95]  T. Sakamoto,et al.  Energy input and response from prompt and early optical afterglow emission in γ-ray bursts , 2006, Nature.

[96]  U. Chicago,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[97]  C. Steidel,et al.  Evidence for Solar Metallicities in Massive Star-forming Galaxies at z ≳ 2 , 2004, astro-ph/0405187.

[98]  B. Gibson,et al.  Metal Abundances in the Magellanic Stream , 2000, astro-ph/0007078.

[99]  Jason X. Prochaska,et al.  On the Incidence of C IV Absorbers Along the Sight Lines to Gamma-Ray Bursts , 2007, 0705.0387.

[100]  L.Armus,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .

[101]  Simon J. Lilly,et al.  Strong Mg II Systems in Quasar and Gamma-Ray Burst Spectra , 2007 .

[102]  Chile,et al.  A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.

[103]  J. Gorosabel,et al.  ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES , 2008, 0803.2235.

[104]  Joshua S. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .

[105]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[106]  Max Pettini,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.