On equivalence and emptiness problems of multi-letter (measure many) quantum finite automata

In this paper, we study some decision problems both for {\it multi-letter quantum finite automata} and {\it measure many multi-letter quantum finite automata}. We first show that given a $k_1$-letter quantum finite automaton $\mathcal{A}_1$ and a $k_2$-letter quantum finite automaton $\mathcal{A}_2$ over the same input alphabet $\Sigma$, they are equivalent if and only if they are $(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k$-equivalent where $n_i$, $i=1,2$, are the number of states in $\mathcal{A}_i$ respectively, and $k=\max\{k_1,k_2\}$. By applying a method, due to the author, used to deal with the equivalence problem of {\it measure many one-way quantum finite automata}, we also show that a $k_1$-letter measure many quantum finite automaton $\mathcal{A}_1$ and a $k_2$-letter measure many quantum finite automaton $\mathcal{A}_2$ are equivalent if and only if they are $(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k$-equivalent where $n_i$, $i=1,2$, are the number of states in $\mathcal{A}_i$ respectively, and $k=\max\{k_1,k_2\}$. Next, we study the emptiness problem of those two kinds of quantum finite automata. We show that whether the language recognized by a $k$-letter quantum finite automaton with non-strict cut-point is empty is undecidable, but we leave open the emptiness of language reorganized by a $k$-letter quantum finite automaton with strict cutpoint. We also show that whether the languages recognized by a $k$-letter measure many quantum finite automaton with both nonstrict and strict cutpoints are undecidable. And the direct consequences of the above outcomes are summarized in the paper.

[1]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[2]  N. Jacobson Lectures In Abstract Algebra , 1951 .

[3]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[4]  J. Carlyle Reduced forms for stochastic sequential machines , 1963 .

[5]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[6]  T. G. Szymanski,et al.  On the Equivalence, Containment, and Covering Problems for the Regular and Context-Free Languages , 1976, J. Comput. Syst. Sci..

[7]  Nathan Jacobson,et al.  Lectures in Abstract Algebra I: Basic Concepts , 1976 .

[8]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[9]  R. Feynman Simulating physics with computers , 1999 .

[10]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  M. W. Shields An Introduction to Automata Theory , 1988 .

[12]  Tero Harju,et al.  The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..

[13]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[14]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[15]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[16]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[17]  Leonard M. Adleman,et al.  Quantum Computability , 1997, SIAM J. Comput..

[18]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[19]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[20]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[21]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[22]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[23]  Computing with quanta - impacts of quantum theory on computation , 2002, Theor. Comput. Sci..

[24]  Berndt Farwer,et al.  ω-automata , 2002 .

[25]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[26]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[27]  P. Malik On equivalence. , 2003, The Canadian journal of cardiology.

[28]  Vincent D. Blondel,et al.  Undecidable Problems for Probabilistic Automata of Fixed Dimension , 2003, Theory of Computing Systems.

[29]  Juraj Hromkovic,et al.  One-way multihead deterministic finite automata , 1983, Acta Informatica.

[30]  Vincent D. Blondel,et al.  Decidable and Undecidable Problems about Quantum Automata , 2005, SIAM J. Comput..

[31]  Daowen Qiu,et al.  Determination of equivalence between quantum sequential machines , 2006, Theor. Comput. Sci..

[32]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[33]  Ansis Rosmanis,et al.  Multi-letter Reversible and Quantum Finite Automata , 2007, Developments in Language Theory.

[34]  Mika Hirvensalo,et al.  Improved Undecidability Results on the Emptiness Problem of Probabilistic and Quantum Cut-Point Languages , 2007, SOFSEM.

[35]  Mika Hirvensalo,et al.  Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.

[36]  Samvel K. Shoukourian,et al.  The equivalence problem of multidimensional multitape automata , 2008, J. Comput. Syst. Sci..

[37]  A. C. Cem Say,et al.  Languages Recognized with Unbounded Error by Quantum Finite Automata , 2008, CSR.

[38]  Rusins Freivalds,et al.  Quantum Computation with Devices Whose Contents Are Never Read , 2010, UC.

[39]  Hugo Gimbert,et al.  Probabilistic Automata on Finite Words: Decidable and Undecidable Problems , 2010, ICALP.

[40]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[41]  Quantum computation with write-only memory , 2012, Natural Computing.

[42]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[43]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[44]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[45]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.

[46]  Paulo Mateus,et al.  On the complexity of minimizing probabilistic and quantum automata , 2012, Inf. Comput..

[47]  Tianrong Lin,et al.  Another approach to the equivalence of measure-many one-way quantum finite automata and its application , 2011, J. Comput. Syst. Sci..

[48]  Note on equivalence of cutpoint languages recognized by measure many quantum finite automata , 2013 .

[49]  Tianrong Lin Notes on equivalence of cut-point languages about measure many quantum automata , 2013, ArXiv.