Computing median and antimedian sets in median graphs

The median (antimedian) set of a profile π=(u1,…,uk) of vertices of a graph G is the set of vertices x that minimize (maximize) the remoteness ∑id(x,ui). Two algorithms for median graphs G of complexity O(n idim(G)) are designed, where n is the order and idim(G) the isometric dimension of G. The first algorithm computes median sets of profiles and will be in practice often faster than the other algorithm which in addition computes antimedian sets and remoteness functions and works in all partial cubes.

[1]  H. M. Mulder The interval function of a graph , 1980 .

[2]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[3]  S. S. Ting,et al.  A Linear-Time Algorithm for Maxisum Facility Location on Tree Networks , 1984, Transp. Sci..

[4]  Hans-Jürgen Bandelt,et al.  Medians in median graphs , 1984, Discret. Appl. Math..

[5]  Hans-Jürgen Bandelt,et al.  Retracts of hypercubes , 1984, J. Graph Theory.

[6]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[7]  Garry L. Johns,et al.  On Peripheral Vertices in Graphs , 1990 .

[8]  Elke Wilkeit,et al.  The retracts of Hamming graphs , 1992, Discret. Math..

[9]  Hans-Jürgen Bandelt,et al.  Quasi-median graphs and algebras , 1994, J. Graph Theory.

[10]  Donald E. Knuth,et al.  Stable Networks and Product Graphs , 1995 .

[11]  Fred S. Roberts,et al.  The Median Procedure on Median Graphs , 1998, Discret. Appl. Math..

[12]  Wilfried Imrich,et al.  Recognizing Median Graphs in Subquadratic Time , 1999, Theor. Comput. Sci..

[13]  Wilfried Imrich,et al.  Recognizing Graphs of Acyclic Cubical Complexes , 1999, Discret. Appl. Math..

[14]  Wilfried Imrich,et al.  Median Graphs and Triangle-Free Graphs , 1999, SIAM J. Discret. Math..

[15]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[16]  Hans-Jürgen Bandelt,et al.  Graphs with Connected Medians , 2002, SIAM J. Discret. Math..

[17]  Wilfried Imrich,et al.  Fast recognition algorithms for classes of partial cubes , 2003, Discret. Appl. Math..

[18]  Francesco Maffioli,et al.  Discrete facility location and routing of obnoxious activities , 2003, Discret. Appl. Math..

[19]  Bruno Leclerc,et al.  The Median Procedure in the Semilattice of Orders , 2003, Discret. Appl. Math..

[20]  Janez Zerovnik,et al.  The obnoxious center problem on weighted cactus graphs , 2001, Discret. Appl. Math..

[21]  Arie Tamir,et al.  Locating two obnoxious facilities using the weighted maximin criterion , 2006, Oper. Res. Lett..

[22]  Aleksander Vesel,et al.  Fast Recognition of Fibonacci Cubes , 2007, Algorithmica.