Wafer-Scale Fabrication of Recessed-Channel PtSe2 MOSFETs With Low Contact Resistance and Improved Gate Control

Wafer-scale fabrication of PtSe<sub>2</sub> MOSFETs was demonstrated by photolithography on Pt films directly selenized at 400 °C. Taking advantage of the unique property of PtSe<sub>2</sub> to transition from a semiconductor to a semimetal as its thickness increases beyond a few monolayers, channel recess was adapted for improving gate control while keeping the contact resistance below 0.01 <inline-formula> <tex-math notation="LaTeX">$\Omega \cdot \text {cm}$ </tex-math></inline-formula>. The wafer-scale fabrication resulted in uniform device characteristics so that average instead of best results was reported. For example, the drain currents at <inline-formula> <tex-math notation="LaTeX">${V}_{\text {GS}} = -10$ </tex-math></inline-formula> V, <inline-formula> <tex-math notation="LaTeX">${V}_{\text {DS}} = -1$ </tex-math></inline-formula> V were <inline-formula> <tex-math notation="LaTeX">$25~\pm ~5$ </tex-math></inline-formula>, 57 ± 8, and <inline-formula> <tex-math notation="LaTeX">$618~\pm ~17~\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> for 4-, 8-, and 12-nm-thick PtSe<sub>2</sub>, respectively. The corresponding peak transconductances were 0.20 ± 0.1, 0.60 ± 0.05, and <inline-formula> <tex-math notation="LaTeX">$1.4~\pm ~0.1~\mu \text{S}/\mu \text{m}$ </tex-math></inline-formula>. The forward-current cutoff frequency of 12-nm-thick PtSe<sub>2</sub> MOSFETs was 42 ± 5 MHz, whereas the corresponding frequency of maximum oscillation was 180 ± 30 MHz. These results confirmed the application potential of PtSe<sub>2</sub> for future-generation thin-film transistors.

[1]  James C. M. Hwang,et al.  Improvement by Channel Recess of Contact Resistance and Gate Control in Large-Scale Spin-Coated MoS2 MOSFETs , 2018, IEEE Electron Device Letters.

[2]  James C. M. Hwang,et al.  Wafer-scale Material-device Correlation of Tellurene MOSFETs , 2018, 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).

[3]  H. Kuo,et al.  Phase-Engineered PtSe2 -Layered Films by a Plasma-Assisted Selenization Process toward All PtSe2 -Based Field Effect Transistor to Highly Sensitive, Flexible, and Wide-Spectrum Photoresponse Photodetectors. , 2018, Small.

[4]  Matthias Wietstruck,et al.  CMOS-compatible batch processing of monolayer MoS2 MOSFETs , 2018 .

[5]  A. Kis,et al.  Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide , 2018, Nature Communications.

[6]  G. Duesberg,et al.  Electrical devices from top-down structured platinum diselenide films , 2018, npj 2D Materials and Applications.

[7]  W. Duan,et al.  High quality atomically thin PtSe2 films grown by molecular beam epitaxy , 2017, 1703.04279.

[8]  S. Lau,et al.  High‐Electron‐Mobility and Air‐Stable 2D Layered PtSe2 FETs , 2017, Advanced materials.

[9]  Aaron M. Lindenberg,et al.  2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications , 2016 .

[10]  Qiang Li,et al.  Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics , 2016, Advanced materials.

[11]  Conor P. Cullen,et al.  High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. , 2016, ACS nano.

[12]  Wenxu Zhang,et al.  The mechanism of layer number and strain dependent bandgap of 2D crystal PtSe2 , 2016, 1605.08536.

[13]  D. Gall Electron mean free path in elemental metals , 2016 .

[14]  Jannik C. Meyer,et al.  Raman characterization of platinum diselenide thin films , 2015, 1512.09317.

[15]  Shen Lai,et al.  Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. , 2015, ACS nano.

[16]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[17]  Bo Qiu,et al.  First-principles simulation of electron mean-free-path spectra and thermoelectric properties in silicon , 2014, 1409.4862.

[18]  Kaikai Xu,et al.  Electro-Optical Modulation Processes in Si-PMOSFET LEDs Operating in the Avalanche Light Emission Mode , 2014, IEEE Transactions on Electron Devices.

[19]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[20]  F. Lacy Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors , 2011, Nanoscale research letters.

[21]  S. S. Yuen,et al.  Recess channel structure for reducing source/drain series resistance in ultra-thin SOI MOSFETs , 1993, Proceedings of 1993 IEEE International SOI Conference.

[22]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[23]  O. Gorochov,et al.  Crystal growth and characterization of several platinum sulfoselenides , 1976 .

[24]  M. Hersam,et al.  Scanning Probe Nanopatterning and Layer‐by‐Layer Thinning of Black Phosphorus , 2017, Advanced materials.

[25]  R. Bez,et al.  A physically-based model of the effective mobility in heavily-doped n-MOSFETs , 1998 .

[26]  G. Kliche Far-infrared and X-ray investigations of the mixed platinum dichalcogenides PtS2−xSex, PtSe2−xTex, and PtS2−xTex , 1985 .

[27]  D. D. Khandelwal,et al.  GaAs FET principles and technology , 1982 .